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SUMMARY
Structural rules underlying functional properties of cortical circuits are poorly understood. To explore these
rules systematically, we integrated information from extensive literature curation and large-scale experi-
mental surveys into a data-driven, biologically realistic simulation of the awake mouse primary visual cortex.
The model was constructed at two levels of granularity, using either biophysically detailed or point neurons.
Both variants have identical network connectivity and were compared to each other and to experimental
recordings of visual-driven neural activity. While tuning these networks to recapitulate experimental data,
we identified rules governing cell-class-specific connectivity and synaptic strengths. These structural con-
straints constitute hypotheses that can be tested experimentally. Despite their distinct single-cell abstrac-
tion, both spatially extended and point models perform similarly at the level of firing rate distributions for
the questions we investigated. All data and models are freely available as a resource for the community.
INTRODUCTION

Mechanisms connecting the structure of cortical circuits to

patterns of neural activity are poorly understood. Elucidating

such mechanisms requires systematic data collection and

modeling to ‘‘understand’’ these data. Such an understanding

is always relative to a particular domain of interest—be it

modeling the physics of excitable brain tissue (Koch, 1999; Ei-

nevoll et al., 2013), mimicking the computations that lead to a

particular set of firing rates (Yamins and DiCarlo, 2016), or

diagnosing and ultimately curing psychiatric and neurological

diseases. The first option—biologically realistic modeling—

appears necessary to disentangle the extreme complexity of

cortex (Harris and Mrsic-Flogel, 2013; Harris and Shepherd,

2015; Amunts et al., 2016; Koch and Jones, 2016; Martin

and Chun, 2016; Chevée and Brown, 2018; Einevoll

et al., 2019).

Simulating cortical circuits has a long history (e.g., Wehmeier

et al., 1989; Zemel and Sejnowski, 1998; Troyer et al., 1998;

Krukowski and Miller, 2001; Traub et al., 2005; Zhu et al.,

2009; Reimann et al., 2013; Potjans and Diesmann, 2014; Mark-

ram et al., 2015; Arkhipov et al., 2018; Joglekar et al., 2018;

Schmidt et al., 2018; Antolı́k et al., 2019; Schwalger andChizhov,

2019), with models incrementally building upon their predeces-

sors. The simulations described here are a further instance of

this evolution toward digital simulacra that predict new experi-
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ments, are insightful, and are ever more faithful to the vast

complexity of cortical cell classes, connections, and activity.

We developed data-drivenmodels of themouse primary visual

cortex (area V1), containing �230,000 neurons, to simulate

physiological studies with arbitrary visual stimuli (Figure 1A).

We focus on mouse V1 due to substantial amounts of high-qual-

ity data, especially from standardized pipelines at the Allen Insti-

tute for Brain Science. However, our primary aim is to provide a

computational platform to study cortical structure and computa-

tion in general, under realistic biological constraints. Our models

can be used as templates for other cortical areas. We developed

two variants: using biophysically detailed compartmental

neuronal models (Gouwens et al., 2018) or generalized leaky

integrate and fire (GLIF) point-neuron models (Teeter et al.,

2018), both constrained by experimental measurements and re-

producing multiple observations from our electrical recordings

in vivo (Siegle et al., 2019). Users of our resources should select

the model based on the question of interest, where, for instance,

investigating local field potentials, dendritic integration, or local

learning rules clearly requires using biophysical resolution with

spatially extended dendrites.

We describe three predictions that emerged in the process of

building and testing these models. First, the strength (but not the

probability) of synaptic connections from excitatory to non-par-

valbumin (Pvalb) inhibitory neurons is determined by how simi-

larly tuned pre- and post-synaptic neurons are to sensory stimuli.
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Figure 1. Overview of V1 Models

(A) Both models consist of one excitatory and three inhibitory classes (Pvalb, Sst, and Htr3a) in L2/3 to L6; L1 has but a single, inhibitory Htr3a class. Visual stimuli

are conveyed by projections from the LGN (Figures 2 and 3).

(B) Mouse posterior cortex, illustrating the region covered by the models (400-mm radius for the core; 845-mm radius with surrounding annulus).

(C) Left: visualization of the biophysically detailed network (1% of neurons shown). Right: exemplary dendritic morphologies for each class are shown. The total

number of neurons and number of unique models in every class are indicated.
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Second, the synaptic strength in connected pairs of excitatory

neurons depends on both the similarity of the stimulus tuning

of the two neurons and the similarity in the phase of their re-

sponses. Third, as a consequence of the anisotropic mapping

from visual to cortical space (e.g., a 10� movement in the visual

space requires �250 mm movement within cortex for elevation

but only �140 mm for azimuth; Schuett et al., 2002; Kalatsky

and Stryker, 2003), there is an asymmetry between neurons

preferring vertical versus horizontal directions of motion that is

compensated for by an asymmetric circuit architecture.

Our models use the Brain Modeling ToolKit (BMTK) (https://

alleninstitute.github.io/bmtk; Gratiy et al., 2018) that facilitates

simulations with both NEURON (Hines and Carnevale, 1997)

and NEST (Gewaltig and Diesmann, 2007) and supports Python

2.7 and 3.6. Model and simulation outputs are saved in the SO-

NATA format (https://github.com/AllenInstitute/sonata; Dai

et al., 2020). All models, code, and meta-data are publicly avail-
able via our web portal at https://portal.brain-map.org/explore/

models/mv1-all-layers. Tutorials for BMTK and our models are

available online and presented in the Getting Started section of

the STAR Methods. As an open public resource, these models

can predict and complement other experimental and modeling

endeavors. The in vivo extracellular recordings used for compar-

ison are recorded from a standardized pipeline that is also freely

available (Siegle et al., 2019; https://portal.brain-map.org/

explore/circuits/visual-coding-neuropixels).

RESULTS

Representing Diverse Cortical Cell Classes
Our biophysical and GLIF model variants use the same connec-

tivity graph (i.e., each neuron in one variant has an exact counter-

part in the other, with the same coordinates, presynaptic sour-

ces, and post-synaptic targets). The first step in building this
Neuron 106, 388–403, May 6, 2020 389
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network is to instantiate an 845-mm radius of cortex (Figure 1B).

For the biophysically detailed variant, the ‘‘core’’ (400-mm radius)

is composed of morphologically derived multi-compartmental

neurons with somatic Hodgkin-Huxley dynamics and passive

dendrites (Gouwens et al., 2018), surrounded by an annulus of

leaky-integrate-and-fire neurons, to avoid boundary artifacts

(Arkhipov et al., 2018). We here focus on the network within

this central core.

Neuronmodels are reconstructed from slice electrophysiology

(Gouwens et al., 2018; Teeter et al., 2018; http://celltypes.brain-

map.org). Although recent surveys suggest �50–100 classes in

V1 (Tasic et al., 2018; Gouwens et al., 2019), the currently avail-

able neuronal models, connectivity data, and in vivo recordings

offer lower cell class resolution into 17 classes (Figures 1A and

1C). Inhibitory neuron classes are Htr3a in layer 1 (L1) and Pvalb,

somatostatin (Sst), and Htr3a in L2/3 to L6 (Lee et al., 2010;

Tremblay et al., 2016). Note that VIP interneurons are a subclass

of Htr3a in L2/3–L6; because they are studied most extensively

amongHtr3a neurons, we resort to using VIP studies to constrain

the Htr3a class. One class of excitatory neurons is each present

in L2/3 to L6 (E2/3, E4, E5, and E6). These 17 cell classes are rep-

resented by 112 unique individual models for the biophysical and

111 for the GLIF network. Cell densities across layers are esti-

mated from anatomical data (Sch€uz and Palm, 1989; Lee et al.,

2010), with an 85%:15% fraction for excitatory and inhibitory

neurons (see STAR Methods). The final networks contain

230,924 cells (51,978 in the core).

We determined synaptic connectivity using three design itera-

tions. In the first (see immediately below), we constructed the

feedforward geniculate input into cortex. Second, we introduced

massive synaptic recurrency, which depended on the stimulus

tuning of the cells. Finally, we refined the recurrent connectivity

with respect to the stimulus tuning properties.

Thalamic Input to the V1 Models
The lateral geniculate nucleus (LGN) of the thalamus mediates

retinal input to V1.We created an LGNmodule that generates ac-

tion potentials for arbitrary visual stimuli (see Getting Started in

STAR Methods).

Creating LGN Units

The LGN module is composed of spatiotemporally separable fil-

ters (released publicly via BMTK; https://alleninstitute.github.io/

bmtk) fitted to electrophysiology recordings frommouse LGN (Du-

rand et al., 2016). In a substantial elaboration over our previous

work (Arkhipov et al., 2018), we developed filters for four classes

of experimentally observed functional responses (Piscopo et al.,

2013; Durand et al., 2016): sustainedON; sustainedOFF; transient

OFF; andON/OFF, further subdivided according to preferred tem-

poral frequency (TF) (Figure 2A; Table 1 in STAR Methods). We

average the experimentally recorded responses for each class to

create filters that can process any spatiotemporal input and

compute a firing rate/spike train output (Figure 2B; STAR

Methods). The filters are distributed in visual space according to

occurrence ratios of the LGN cell classes (Durand et al., 2016).

Direction Selective Input into V1 Cells

Our main emphasis is on relating the structure of cortical circuits

to their in vivo function. We sought to recapitulate physiological

levels of direction selectivity (Niell and Stryker, 2008; Durand
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et al., 2016) and, in doing so, study the underlying structure of

feedforward thalamocortical inputs and recurrent connectivity

(our freely available models permit testing of many other

metrics).

Because recent work indicates that direction selectivity is pro-

duced in V1 from convergence of spatiotemporally asymmetric

LGN inputs (Lien and Scanziani, 2018), we assume that LGN

innervation into V1 neurons contains a slow (sustained) subfield

and a fast (transient) subfield (Figure 2C). These produce an

asymmetry in responses to opposite directions of motion (Fig-

ure 2D). A simplified theoretical description (see STAR Methods;

Figure S1) suggests sufficiently high orientation selectivity

indices (OSIs) and direction selectivity indices (DSIs) with such

subfields (Lien and Scanziani, 2013, 2018) as well as reversal of

the preferred direction as the spatial frequency of grating in-

creases (analogous to aliasing in the fly visual system; vanSanten

and Sperling, 1984; Borst and Egelhaaf, 1989; Arenz et al., 2017),

which we confirmed experimentally (Billeh et al., 2019).

Creating and Testing Thalamocortical Connectivity

We instantiated 17,400 LGN filters in visual space (Figure 2A) and

established LGN-to-V1 connections using the following three-

step procedure (see STAR Methods).

The first step selects the LGN units projecting to each V1

neuron utilizing the spatiotemporally asymmetric architecture

that yields direction and orientation selectivity (Lien and Scan-

ziani, 2013, 2018) and selectively innervating only excitatory

and Pvalb neurons in L2/3–L6 and non-Pvalb neurons in L1

(Kloc and Maffei, 2014; Ji et al., 2016). For each V1 neuron, we

determined the visual center, size, and directionality (a pre-as-

signed preferred angle of stimulus motion) of elliptical subfields

from which LGN filters will be sampled (Figure 3A; Table 2 in

STAR Methods). We then identified LGN receptive fields (RFs)

(parameterized during filter construction) that overlap with these

elliptical subfields of the V1 neuron. One subfield always sam-

ples from transient OFF LGN filters and the other from sustained

ON or OFF (see STAR Methods).

The second step (for the biophysical model only, see STAR

Methods) determines the number and placement of synapses

on V1 neurons, using data on LGN axonal density (Morgenstern

et. al, 2016) and estimates of synapse numbers per neuron

(Schoonover et al., 2014; Bopp et al., 2017). The effect of den-

dritic placement on the somatic charge is shown in Figure S1.

The third and final step establishes the strength of the thala-

mocortical synapses based on experimental current measure-

ments (Lien and Scanziani, 2013; Ji et al., 2016). The strength

is scaled to match the target mean current (Figures 3B and

3C) in response to a drifting grating (see STAR Methods). Layer

4 is the main target of the thalamocortical projections, and there-

fore, the currents are largest in this layer (Figures 3B and 3C).

To test the outcome of this procedure, we simulated the

network without recurrent connections using drifting gratings.

Individual neurons are direction selective (Figure 3D), consis-

tent with experimental measurements of LGN input currents

(Lien and Scanziani, 2013, 2018). At the network level (example

raster in Figure 3E), the average firing rates, DSIs, and OSIs due

to LGN-only input are calculated (Figures 3F, 3G, and S2,

respectively). For reference, data from in vivo extracellular

Neuropixels recordings from awake mice (Siegle et al., 2019)
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Figure 2. Filter Models of the Lateral Geniculate Nucleus (LGN)

(A) LGN cell classes fit from electrophysiological recordings (Durand et al., 2016) using spatiotemporally separable filters. Rate of occurrence of each class in our

model is indicated.

(B) Example filter for the sON-TF8 class. Top: the spatial and temporal components of the filter are shown. Bottom: the F0 (cycle averaged mean rate response)

and F1 (modulation of the response at the input stimulus frequency) components for the data and model fit in response to drifting gratings (mean ± SEM).

(C) Schematic of a candidate pool of LGN cells, separated into sustained and transient subfields, projecting to a V1 cell with matching retinotopic positions.

(D) Schematic illustrating the direction selectivity mechanism. When a bar moves from left to right (preferred), the responses from both subfields overlap and

exceed a threshold; no overlap occurs for movement in the opposite direction.
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are included in Figure 3F (https://portal.brain-map.org/explore/

circuits/visual-coding-neuropixels; Figure S2) and are used

throughout the manuscript as a benchmark. Note that experi-

mental data are robustly classified into regular-spiking (RS)

and fast-spiking groups (FS), roughly corresponding to excit-

atory and Pvalb inhibitory neurons (small contributions

from non-Pvalb inhibitory neurons are likely present in both

groups). Hence, throughout the Results section, we compare

model excitatory and Pvalb neurons with RS and FS cells,

respectively.

We define a similarity score, S, between distributions of a

metric of interest to compare the experiments and models (one

minus the Kolmogorov–Smirnov distance; see STAR Methods).

If two distributions are identical, S = 1; Sz0 indicates

quite different distributions (Figure S2). As expected, in the

absence of intra-cortical amplification, S is low for firing rates

(E-biophysical = 0.18; E-GLIF = 0.19; Pvalb-biophysical = 0.63;

Pvalb-GLIF = 0.37), OSIs (E-biophysical = 0.22; E-GLIF = 0.22;

Pvalb-biophysical = 0.60; Pvalb-GLIF = 0.54), and DSIs (E-bio-

physical = 0.22; E-GLIF = 0.21; Pvalb-biophysical = 0.73;
Pvalb-GLIF = 0.54). The biophysical and GLIF models compare

well to one another (e.g., S values: E-rates = 0.96; E-OSI =

0.95; E-DSI = 0.95).

Finally, a background pool, mimicking the influence of the rest

of the brain, provides input from a single Poisson source firing at

a constant rate of 1 kHz to all V1 cells. The weights of this back-

ground were adjusted with the recurrent connectivity in place to

ensure that the baseline firing rates of all neurons match exper-

iments (see below).

Creating the Recurrent Connectivity in the V1 Network
Cortical circuits feature extensive recurrent connections that

amplify thalamocortical inputs and shape cortical computations

(Douglas et al., 1989, 1995; Douglas and Martin, 2007; Lien and

Scanziani, 2013; Arkhipov et al., 2018). Despite many studies

(e.g., Cauli et al., 1997; Dantzker and Callaway, 2000; Beierlein

and Connors, 2002; Thomson et al., 2002; Beierlein et al.,

2003; Mercer et al., 2005; Song et al., 2005; West et al., 2006;

Yoshimura et al., 2005; Lefort et al., 2009; Hofer et al., 2011;

Ko et al., 2011; Levy and Reyes, 2012; Olsen et al., 2012; Pfeffer
Neuron 106, 388–403, May 6, 2020 391
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Figure 3. Thalamic Inputs to Cortex

(A) LGN filters connecting to four different V1 neurons. Black triangles and colored circles indicate the centers of the receptive fields of V1 and presynaptic LGN

neurons. Gray circles indicate all other LGN filters. The elliptical subfields used to select the projecting LGN filters are shown.

(B–G) Responses of the biophysical V1 model to LGN input without any intracortical connections or background activity.

(B) Post-synaptic currents in V1 neurons responding to 500 ms of gray screen followed by a drifting grating.

(C) Summary of post-synaptic currents for every neuron class (for preferred drifting grating), after matching to target values (bar: median; box: 25th–75th

percentile; whiskers: up to 1.5 of the interquartile range).

(D) Example tuning curve of a single E4 neuron (mean ± SEM across 10 trials).

(E) Example raster plot, same stimulus as in (B). Neuron classes with large excitatory postsynaptic current (EPSC) current values (boxplots in C) exhibit substantial

spiking activity.

(legend continued on next page)

ll
NeuroResource

392 Neuron 106, 388–403, May 6, 2020



ll
NeuroResource
et al., 2013; Vélez-Fort et al., 2014; Bortone et al., 2014; Cossell

et al., 2015; Jiang et al., 2015), data on the exact patterns and

magnitude of V1 recurrent connectivity remain sparse. We set

out to construct recurrent connections in a data-driven manner

via extensive curation of the literature supplemented by

Allen Institute data (Seeman et al., 2018) when available. This

resulted in four key resources (Figure 4) containing estimates

of (1) connection probability, (2) synaptic strengths, (3) axonal

delays, and (4) dendritic targeting of synapses (freely available

at https://portal.brain-map.org/explore/models/mv1-all-layers).

Our cortical network contains specific instantiations of these

connectivity rules. Unfortunately, there are no data for many

connection classes in mouse V1; therefore, we used other sour-

ces of information in the following order of preference: mouse

visual cortex; mouse non-visual or rat visual cortex; and rat

non-visual cortex. Additional entries were filled using assump-

tions of similarity or the rat somatosensory cortex model (Mark-

ram et al., 2015; Reimann et al., 2015). 89 out of 289 entries

remained undetermined (empty cells in Figures 4A and 4B) and

were set to zero due to lack of data (see STAR Methods).

Figure 4A reports connection probabilities at 75 mm planar in-

tersomatic distance, used as parameters for Gaussian distance-

dependent connectivity rules for different source-target class

pairs (Figure 4C). Excitatory-to-excitatory (E-to-E) connections

in L2/3 of mouse V1 also exhibit ‘‘like-to-like’’ preferences (Ko

et al., 2011; Cossell et al., 2015; Wertz et al., 2015; Lee et al.,

2016), i.e., cells preferring similar stimuli are preferentially con-

nected. We assume that such like-to-like rules are ubiquitous

among E-to-E connections within and across layers (Figure 4D;

see STAR Methods) but do not apply to E-to-I, I-to-E, and I-to-

I connection probabilities, following experimental observations

(Bock et al., 2011; Fino and Yuste, 2011; Packer and Yuste,

2011; Znamenskiy et al., 2018).

Recent experiments indicate that, besides connection proba-

bility, the amplitude (strength) of E-to-E synaptic connections in

L2/3 also exhibits a like-to-like dependence (Cossell et al., 2015;

Lee et al., 2016), which may be more important for neuronal tun-

ing than connection probability rules (Schaub et al., 2015; Arkhi-

pov et al., 2018). A similar like-to-like rule for synaptic strength

(but not connection probability) has been reported for I-to-E con-

nections (Znamenskiy et al., 2018). Thus, we assume that all syn-

aptic strength classes (Figure 4B) are modulated by such a rule

(Figure 4D). At this point, all like-to-like connection probability

and synaptic strength profiles were symmetric with respect to

the opposite preferred directions (Figure 4D).

Notably, experiments show that the Sst and Htr3a classes

receive little to no LGN input (Figure 3; Ji et al., 2016) yet exhibit

orientation and direction tuning (Liu et al., 2009; Kerlin et al.,

2010; Ma et al., 2010). We assumed that this is due to like-to-

like inputs from excitatory neurons. Indeed, our simulations

implementing these rules exhibit substantial orientation and di-

rection selectivity for Sst and Htr3a classes. We confirm this pre-

dictionby removing the like-to-like synapticweight rule toSst and
(F) Summary of firing rates. For reference, experimental data from in vivo extracellu

circuit) are shown.

(G) Direction selectivity index (DSI) from responsive neurons. Some DSI values

firing rates.
Htr3a neurons in our final model: indeed, both cell classes lose

their orientation and direction selectivity properties (see below).

The third resource contains synaptic delays between different

neuronal classes. Because measurements of these properties

were particularly sparse, our final table is of coarser resolution

(Figure 4E). The fourth resource (for the biophysical model) is a

set of dendritic targeting rules for each connection class (Fig-

ure 4F). Experimental data for this are only available for a rela-

tively small number of scenarios, and we used what were avail-

able from internal data and the literature (see STAR Methods).

Optimization of Synaptic Weights
Although efficient optimization methods for recurrent spiking

networks exist (e.g., Sussillo and Abbott, 2009; Nicola and Clo-

path, 2017), their performance has not yet achieved the level

required for computationally expensive and highly heteroge-

neous networks as ours. We therefore use a heuristic optimiza-

tion approach with three identical criteria applied to biophysical

and GLIF networks: both (1) spontaneous firing rates as well as

(2) peak firing rates in response to a single trial of a drifting grating

(0.5 s long) should match experimental data, and (3) the models

should not exhibit epileptic activity. The optimization applied to

synaptic weights only via grid searches alongweights of connec-

tions between neuronal classes, using uniform scaling of the

selected weight class. The LGN-to-L4 weights were fixed, as

they were matched directly to experimental recordings in vivo

(Lien and Scanziani, 2013; Figure 3), whereas the net current in-

puts from LGN to other layers could vary because experimental

data for those were obtained in vitro (Ji et al., 2016). Optimizing

the full network in one step was very challenging; instead, we fol-

lowed a stepwise, layer-by-layer procedure (Figures 4G and S3).

We first optimized the recurrent weights within L4 and then

added L2/3 recurrent connections and optimized the weights

in both L4 and L2/3. This approach was repeated by adding

L5, then L6, and finally L1 (Figures 4G and S3; see STAR

Methods for details).

After optimization, a typical response to a drifting grating ex-

hibits irregular activity (Figure 5A). The firing rates are similar to

those measured in vivo (Figure 5B; S values: E-biophysical =

0.85; E-GLIF = 0.76; Pvalb-biophysical = 0.78; Pvalb-GLIF =

0.83). The OSIs are improved relative to LGN-only simulations

(Figure 3G) yet still unsatisfactory (Figure S4; S values: E-bio-

physical = 0.56; E-GLIF = 0.64; Pvalb-biophysical = 0.37;

Pvalb-GLIF = 0.60), and DSI is also poor (Figures 5C and 5D; S

values: E-biophysical 0.65; E-GLIF = 0.69; Pvalb-biophysical =

0.43; Pvalb-GLIF = 0.59). The models match well with experi-

mental data for signal and noise correlations (Figure S4; see

STAR Methods). Again, both model variants are similar to each

other (see Discussion; S values: E-rates = 0.86; E-OSI = 0.90;

E-DSI = 0.91).

Although this is an improvement relative to LGN-only

simulations (Figure 3), both models fail at orientation and direc-

tion selectivity. Although the structure of our network was
lar electrophysiology recordings from awakemice (i.e., fully connected cortical

are high, as these simulations are purely feedforward and thus exhibit low
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Figure 4. Recurrent Connectivity Rules

(A) Probability of connection at an intersomatic distance of 75 mm.

(B) Strength of connections (somatic unitary post-synaptic potential [PSP]).

(C) The distance-dependent connection probabilities for different classes of connections.

(D) The functional rules for connection probability (applied only to E-to-E connections) and synaptic strengths (applied to all connection classes) as a function of

the difference in preferred direction angle qpref between the source and target neurons.

(E) Axonal delays for connections between classes.

(F) Dendritic targeting rules (see STAR Methods).

(G) Schematic illustrating the layer-by-layer optimization procedure after incorporating all known data for recurrent connections. In the first stage, all

recurrent connections except those within L4 were set to zero; L4 weights were optimized. Then, L2/3 connections (within layer and between L2/3 and L4)

were added and optimized. The procedure was repeated, adding one layer at a time, until all layers were connected and optimized. See intermediate

simulation outputs in Figure S3.
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constrained by data relatively well at the level of cell classes, ex-

isting data provide much fewer constraints on the functional

rules of individual recurrent connections, which relate tuning of
394 Neuron 106, 388–403, May 6, 2020
neurons to their connectivity and synaptic properties. We there-

fore reasoned that these functional rules require adjustment in

the models.



Figure 5. Initial Simulation Results from the Recurrent V1 Models

(A) Raster plot in response to a drifting grating (biophysical model). Within each cell class, the cell IDs are sorted according to the cells’ preferred angles.

(B) Peak firing rates.

(C) Example tuning curves (mean ± SEM across 10 trials) for an E4 neuron for both the intermediate model and LGN-only model (same neuron as Figure 3D).

(D) DSI for both models and in vivo measurements.
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Refined Synaptic Functional Connections Amplify
Direction Selectivity
Up to this point, the recurrent like-to-like connectivity rules in our

models for probability and weights were symmetric with respect

toDq = 90�, whereDq is the difference between the preferred an-

gles of the two neurons (Figure 4D). In other words, two neurons

that prefer opposite directions (Dq = 180�) had the same proba-

bility of being connected and synapse strength as two neurons

that prefer the same direction (Dq = 0�). This can be contrasted

with ‘‘direction-based’’ asymmetric rules, where neurons prefer-

ring opposite directions of motion are treated differently from

ones preferring the same direction (Figure 6A). We reasoned

that low levels of direction selectivity are due to the absence of

such direction-based rules, because the symmetric rules

enhance neurons’ responses to their anti-preferred direction

due to inputs from oppositely tuned neurons. However, the

models are also grounded in data, which show symmetric like-

to-like rules for probability of E-to-E connections and no like-

to-like rules for I-to-E connections (see above, although data

are mostly limited to connection classes in L2/3). We assumed

that all E-to-E connection probabilities obey the symmetric

rule. Therefore, the only remaining flexibility is in the rules spec-

ifying synaptic weights.
Available data from L2/3 (Cossell et al., 2015; Znamenskiy

et al., 2018) indicate that synaptic amplitude correlates with

similarity of responses, for both E-to-E and I-to-E connected

pairs. However, similarity of preferred direction alone is a poor

predictor of synaptic strength for E-to-E connections, whereas

similarity of receptive fields (ON-OFF overlap) is a better predic-

tor (Cossell et al., 2015). Furthermore, in vivo patch-clamp mea-

surements in L4 indicate that excitatory neurons responding to a

drifting grating in phase with each other are preferentially con-

nected (Lien and Scanziani, 2013). Motivated by these observa-

tions, we introduce two modifications to the synaptic strength

rules: (1) a direction-of-motion-based like-to-like Gaussian pro-

file for all connection classes (Figure 6A) and, (2) for the E-to-E

classes only, a decrease of synaptic strength with distance in

retinotopic visual space between source and target neurons,

projected on the target neuron’s preferred direction (Figure 6B).

No other distance dependency in synaptic strength was intro-

duced. Rule (2) confines the sources of strong connections to a

stripe perpendicular to the target neuron’s preferred direction,

biasing inputs to come primarily from neurons that respond in

phase with the target neuron when stimulated by a drifting

grating or edge (Figure 6B). These assumptions are consistent

with optimal Bayesian synaptic connectivity (Iyer and Mihalas,
Neuron 106, 388–403, May 6, 2020 395



Figure 6. Refined Synaptic Functional Connections
(A) The original symmetric rule from the intermediate model (dotted black, ‘‘Sym’’; Figure 4D) and the refined, asymmetric or ‘‘direction-based’’ (colors) synaptic

strength profiles as a function of the difference between the preferred angles in two connected neurons. The like-to-like rule for E-to-E connection probabilities

remains symmetric (Figure 4D), and no like-to-like rules are applied to other connection probabilities.

(B) The phase-based rule for synaptic strengths of E-to-E connections. Left: schematic of neurons preferring 0� direction is shown, as they respond to a 0� drifting
grating (background shows phase alignment with the drifting grating). Arrow lengths are proportional to phase overlap with center (purple) neuron. Right: stronger

weights are assigned to phase-matched neurons (heatmap illustrates the scaling factor applied in the models).

(C) Firing rates of excitatory neurons in response to their preferred drifting grating direction (median ± SEM across trials) for the biophysical model. Applying the

rules from (A) and (B) results in a firing rate bias for vertical- versus horizontal-preferring neurons due to differential cortical magnification (magenta); the bias is not

observed experimentally (gray). The bias disappears when direction-dependent scaling is applied to synaptic weights according to the target neuron’s assigned

preferred angle (black).

(D) Net synaptic inputs for horizontal- and vertical-preferring E4 biophysical neurons (rules in A and B and the additional direction-dependent scaling) in reti-

notopic (left) and cortical (right) coordinates (averages over 100 neurons after aligning their centers). The connection rules are also included here (distance

dependence and symmetric like-to-like rules).

(E) Histogram of incoming synaptic weights onto E4 neurons based on their preferred direction. Horizontal-preferring neurons have a heavier tail than vertical-

preferring neurons.
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2017). We incorporated rules (1) and (2) at the synaptic strength

level although the connection probabilities are governed by a

distance-dependent rule and a symmetric like-to-like connectiv-

ity rule.

We tested 8 specific choices of rules (1) and (2), sampling mul-

tiple parameters for each (over 100 variants in total), primarily
396 Neuron 106, 388–403, May 6, 2020
employing the GLIF V1 model (Figure S4) before converging on

a final set (Figure 6A). With a sufficiently narrow Gaussian curve

characterizing the direction-based dependence on Dq (Fig-

ure 6A), substantial improvement in DSI is obtained across all

layers (Figure S5). This allows us to predict that like-to-like rules

(1) and (2) above apply, potentially with cell-class-specific



Figure 7. Simulated Responses to Drifting Gratings for the Final Cortical Recurrent Connectivity Rules (from Figure 6)

(A) Raster plot in response to a drifting grating (note strong responses of the cells that prefer this grating’s direction; neuron IDs are sorted within each class by the

preferred angle).

(B) Peak firing rates.

(C) Example tuning curves (mean ± SEM across 10 trials) for an E4 neuron from the final and intermediate (Figure 5C) models and no recurrent connections

(Figure 3D).

(D) DSI for the final V1 models and in vivo recordings.
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parameters (Figure 6A). Given that different parameter values for

rules (1) and (2) result in networks with robust levels of direction

selectivity, the set (Figure 6A) we use for subsequent simulations

is representative. In the absence of direct experimental mea-

surements, we simply note that application of rules (1) and (2)

with sufficiently narrow profiles enables amplification of direction

selectivity by recurrent connections.

These rules, however, introduce a bias: vertical-preferring neu-

rons exhibit higher peak firing rates than horizontal-preferring neu-

rons; such a bias is not observed experimentally (Figure 6C). The

root cause is the asymmetric retinotopic magnification in cortex

(Schuett et al., 2002; Kalatsky and Stryker, 2003), which we imple-

mented in our models (see STAR Methods). Specifically, moving

along the horizontal direction in the cortical retinotopic map (azi-

muth) by 100 mmcorresponds to�7� in the visual space, whereas

along the vertical direction (elevation) 100 mmcorresponds to�4�.
Consequently, the stripe from rule (2) (Figure 6B) iswider in cortical

space for vertical- than for horizontal-preferring neurons, thus

providing stronger net inputs from presynaptic V1 neurons (Fig-

ure S6). Because such a firing rate bias is not empirically observed
(Figure 6C), somemechanismsmust adjust for the horizontal-ver-

tical mismatch of translating retinotopy to connectivity. We imple-

mentonepossiblemechanism, the scalingof the strengthof recur-

rent connections, where horizontal-preferring neurons receive

synapses scaled by 0.5 3 (7 + 4)/4 = 1.38 and vertical-preferring

neurons scaled by 0.53 (7 + 4)/7 = 0.79, with a linear interpolation

inbetween (seeSTARMethods). This approachfixes the firing rate

bias (Figures 6C and S6).

In the final model, horizontal- and vertical-preferring cells

receive, on average, equal excitatory synaptic input, sourced

from the same size of stripes in retinotopic space but

different widths in physical space (Figure 6D; the distance

dependence contribution results in a finite stripe length).

The resulting distribution of incoming weights predicts a

heavier tail for horizontal- than for vertical-preferring neurons

(Figure 6E).

With these finalized models, we simulated drifting gratings

(Figures 7A and 7B; S scores for firing rate: E-biophysical =

0.80; E-GLIF = 0.89; Pvalb-biophysical = 0.85; Pvalb-GLIF =

0.88). Note the emergence of horizontal patches of elevated
Neuron 106, 388–403, May 6, 2020 397
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firing (Figure 7A) due to pronounced direction selectivity not

previously present (Figure 5A). For excitatory cells, the OSI

distributions approximately match experimental recordings

(Figure S6; S scores: E-biophysical = 0.87; E-GLIF = 0.89;

Pvalb-biophysical = 0.47; Pvalb-GLIF = 0.78). Most importantly,

the match of DSI to experimental values (Figures 7C and 7D;

S scores: E-biophysical = 0.91; E-GLIF = 0.86; Pvalb-biophysi-

cal = 0.79; Pvalb-GLIF = 0.81) is improved (c.f. Figures 5C and

5D). Average tuning curves across models and experiments

are shown in Figure S6. The Sst and Htr3a interneurons exhibit

DSIs equal or higher than those of Pvalb interneurons, consistent

with experiments (Kerlin et al., 2010; Ma et al., 2010). Thus,

these new rules successfully enable direction selectivity in

distinct populations of neurons while obeying diverse empirical

constraints.

Both models maintain strong similarity with one another

(S values: E-rates = 0.87; E-OSI = 0.85; E-DSI = 0.91; Table

S1). We also calculated the pairwise similarity score between

all the mice from our experiments and found median similarity

scores (between animals) for firing rate, OSI, and DSI to be in

the range [0.81, 0.84] for RS and [0.64, 0.66] for FS neurons,

providing upper limits for matching experimental data given the

inter-animal variability; as shown above, performance of our final

models is close to these limits in most cases. Finally, our dy-

namics-based metrics still maintain a strong match with experi-

ments (Figure S6).

We confirmed that, if like-to-like synaptic weight rules for E-to-

Sst or Htr3a neurons are replaced with uniform synaptic weights,

these neuron classes lose their orientation and direction selec-

tivity (Figure S7), supporting our prediction that their orientation

and direction tuning is due to local, recurrent connections. A

sensitivity analysis with the GLIF network model (sweeping

through the major synaptic strength parameters: E-to-E; E-to-I;

I-to-E; and I-to-I) shows (Figure S7) that we found a suitable,

though not unique, parameter regime. Not surprisingly, we

observe tradeoffs across the sampled values of parameters,

where improvement in one metric comes at the detriment of

another.

Simulating the Models Using Diverse Stimuli
With this final model in place, we simulate responses to drasti-

cally different stimuli—flashes, natural movies, and a looming

disk (Figure 8). For the flashes and natural movies stimuli, corre-

sponding experimental data were available and compared

against (Figure S8). This demonstrates the utility of our model

to test any visual stimuli. Constructing a new stimulus is simply

a matter of creating a monochromatic (x, y, t) movie (frames

through time) and running it through our LGN filters via the

BMTK code (see Getting Started in STAR Methods).

With full-field flashes, one of the strongest stimuli to test the

stability of the network, our models remain stable and show

strong onset and offset responses (Figures 8A–8C). The natural

movie (Figure 8A) induces varied spatiotemporal patterns

(Figure 8B) and a strong stimulus-onset response (Figure 8C).

Experimental measurements to both flash and natural movies

are publicly available from the Allen Brain Observatory (de Vries

et al., 2020; Siegle et al., 2019); a thorough comparison with the

models can be found in Figure S8.
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As a further illustration, we simulated a looming disk (Figure 8A;

see STAR Methods), a popular stimulus (e.g., Gabbiani et al.,

2002; Yilmaz and Meister, 2013). Our network responds vigor-

ously (Figure 8B), with differences in the time course of popula-

tion firing rates between layers (Figure 8C). The population firing

rate in L5 grows with the stimulus, although other layers show a

transient response. The model predicts that different layers may

exhibit different proportions of transient and ramping responses,

which will be investigated in future experiments.

DISCUSSION

We here present two variants of a simulated mouse primary

visual cortex. Both have an identical network graph, with

�230,000 nodes of two different flavors, either biophysically

elaborate or highly simplified neurons. The variants were con-

strained by a plethora of experimental data: the morphologies

of neurons and their firing behavior in response to somatic

current injections; LGN filters; thalamocortical connectivity;

recurrent connectivity; and activity patterns observed in vivo.

This work continues the trend of developing increasingly more

sophisticated models of cortical circuits in general (Traub

et al., 2005; Zhu et al., 2009; Potjans and Diesmann, 2014; Mark-

ram et al., 2015; Arkhipov et al., 2018; Joglekar et al., 2018;

Schmidt et al., 2018; Dura-Bernal et al., 2019) and visual cortex

in particular (Wehmeier et al., 1989; Troyer et al., 1998; Zemel

and Sejnowski, 1998; Krukowski and Miller, 2001; Arkhipov

et al., 2018; Antolı́k et al., 2019). Our main goal was to integrate

existing and emerging multi-modal datasets describing the

structure and function of cortical circuits into biologically realistic

network models.

Our models are represented with a standardized data format

SONATA (Dai et al., 2020; https://github.com/alleninstitute/

sonata) via the BMTK (https://alleninstitute.github.io/bmtk; Gra-

tiy et al., 2018). Simulations were carried out on 384 CPU cores

for the biophysical and 1 core for GLIF network. The biophysical

network requires�90min and the GLIF network�4min for 1 s of

simulation, amounting to an almost four-orders-of-magnitude-

greater computational cost for the former.

Although our models are similar in size and scope to the Blue

Brain Project’s network model of rat somatosensory cortex

(Markram et al., 2015), they also differ in several ways, besides

the distinction of visual versus somatosensory cortex. Prior to

this publication, all components of our models and code are

freely and publicly available (https://portal.brain-map.org/

explore/models/mv1-all-layers) and can be replicated by any

user with internet access (in particular the computationally less

demanding GLIF model). Further, because we turned our efforts

primarily toward comparing simulations with in vivo experiments,

we supply biologically realistic visual stimuli to our models. Thus,

we employed a large body of functional data constraining tha-

lamo-cortical inputs and allowing arbitrary visual stimuli (movies)

to be simulated. This contrasts with the somatosensory model

that primarily simulated current injections into somas or spiking

inputs from 10 thalamic fibers. In studying recurrent connectivity,

we emphasized the functional logic of connection probabilities

and synaptic strengths, which takes into account the stimulus

tuning and the potential computational roles of neurons in the

https://github.com/alleninstitute/sonata
https://github.com/alleninstitute/sonata
https://alleninstitute.github.io/bmtk
https://portal.brain-map.org/explore/models/mv1-all-layers
https://portal.brain-map.org/explore/models/mv1-all-layers


Figure 8. Responses of V1 Models to Diverse Stimuli

(A) Responses of V1 models to full-field flashes, a natural movie, and a looming disk, all preceded by 500 ms of gray screen. Comparisons with experiments in

Figure S8 are shown.

(B) Example raster plots for all three stimuli.

(C) Mean population firing rates for excitatory neurons.
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circuit, besides the purely structural rules. As a result of these

choices, we identified a number of experimentally testable pre-

dictions concerning the relations between the connectional

properties and functional tuning of neurons.

Recent studies (Rössert et al., 2016; Amsalem et al., 2020; Ar-

khipov et al., 2018) demonstrated that the conversion of a bio-

physical network model to a GLIF counterpart can result in

good qualitative and quantitative agreement in spiking output.

We here likewise observed agreement between the biophysical

andGLIFmodels. Although the connectivity graphs are identical,

the input-output function of every neuron is different; yet, to

judge by their firing rate distributions, the two models act simi-

larly at the population level. This reveals, yet again, the perhaps

unreasonable effectiveness of point neuron models given their

vastly reduced degrees of freedom (Koch 1999). This is true for

both passive (Arkhipov et al., 2018) and active dendritic models

(Rössert et al., 2016). This system level effectiveness originates

from effectiveness at the single-cell level: the individual GLIF

(Teeter et al., 2018) and biophysical models (Gouwens et al.,

2018) we use show similar levels of explained variance when
mapping a noisy current injection at the soma to an output spike

train. It is possible that future models that reconstruct and simu-

late neurons using dendritic current measurements will outper-

form the network models presented here. Nevertheless, our

results support applicability of the computationally less expen-

sive GLIF network models (approximately >8,000 times faster),

although ultimately, the level of resolution to use must be based

on the scientific question under investigation. For instance,

computing the extracellular field potential requires spatially

extended neurons (Rall and Shepherd, 1968; Lindén et al.,

2011; Einevoll et al., 2013; Reimann et al., 2013; Hagen et al.,

2019). Developing our V1 simulacra at two levels of resolution

enables a larger spectrum of possible studies.

In the process of building and testing the models, we made

three major predictions about structure-function relationships in

V1. The first addresses observations that non-Pvalb interneurons

(Htr3a/VIP and Sst) show direction and orientation tuning (Liu

et al., 2009; Kerlin et al., 2010;Ma et al., 2010) but receive connec-

tions from other V1 neurons that are distributed uniformly rather

than a like-to-like fashion (Fino and Yuste, 2011) and receive little
Neuron 106, 388–403, May 6, 2020 399
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to no LGN input (Ji et al., 2016). We thus implemented like-to-like

rules for synaptic strengths of E-to-Sst or Htr3a connections, re-

sulting in robust tuning of Htr3a and Sst classes (the tuning was

lost when the rule was removed; Figure S7).

Our second prediction extends from experiments investi-

gating functional connections between excitatory neurons

(Bock et al., 2011; Ko et al., 2011; Cossell et al., 2015; Wertz

et al., 2015; Lee et al., 2016), thus far primarily in L2/3. Our re-

sults suggest that synaptic weights follow rules that are

different from the rules that connect two neurons in the first

place: whereas the latter are organized in a like-to-like symmet-

ric manner (Ko et al., 2011), the former follow asymmetric (di-

rection-dependent) rules (Figure 6A). In our models, these

weight rules were implemented among excitatory and inhibitory

populations within and across layers (Figure 6A) to enable real-

istic levels of orientation and direction tuning (Figures 7C, 7D,

and S6). How can this be reconciled with the report (Cossell

et al., 2015) that similarity of preferred direction is not a good

predictor of synaptic strength (in L2/3)? Because our models

employ additional phase-dependent rules (Figures 6B and

6E), where incoming connection weights are close to zero

outside of a stripe perpendicular to the target neuron’s

preferred direction, many presynaptic neurons that share the

target neuron’s direction preference connect very weakly to it

(if outside the stripe). Therefore, direction similarity by itself is

not a strong determinant of weights in our models either,

whereas it does determine the weights if combined with the

phase-related geometric constraints. Interestingly, as we were

finalizing this report, a new experimental study (Rossi et al.,

2019) appeared, showing (in L2/3) the preferential location of

presynaptic neurons to be within a stripe, as in our connectivity

implementation (Figures 6B and 6E), thus supporting our

prediction (although the new data suggest this architecture

may be realized in connection probabilities rather than in syn-

aptic weights).

Our third prediction concerns the asymmetry in cortical retino-

topic mapping between the horizontal and vertical axes (Schuett

et al., 2002; Kalatsky and Stryker, 2003). This results in higher

firing rates for vertical- than for horizontal-preferring neurons,

which is not observed experimentally (Figure 6C). We thus infer

the existence of one or more compensatory mechanisms, which

may occur at many levels, including connection probability, LGN

projections, etc. Our models addressed this at the synaptic

strength level (Figures 6E and 6F).

These three predictions concern important relationships

between the circuit structure and in vivo function. The first

prediction is significant because mechanisms of tuning of

Sst and Htr3a/VIP interneurons are likely to be critical in

enabling diverse Sst- and Htr3a-mediated functions (e.g.,

Liu et al., 2009; Kerlin et al., 2010; Ma et al., 2010; Adesnik

et al., 2012; Pfeffer et al., 2013; Fu et al., 2014; Tremblay

et al., 2016; Muñoz et al., 2017). The second prediction sug-

gests a set of general mechanisms that apply across cortical

layers and neuronal classes to shape the computations of

orientation and direction selectivity. The third prediction

illuminates the potentially widespread wiring and/or homeo-

static mechanisms that equalize firing rates between vertical-

and horizontal-preferring neurons. All three predictions
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are amenable to experimental tests (Bock et al., 2011;

Hofer et al., 2011; Ko et al., 2011; Cossell et al., 2015; Wertz

et al., 2015; Lee et al., 2016; Znamenskiy et al., 2018; Rossi

et al., 2019).

Our models are freely accessible for download via the Allen

Institute web portal at https://portal.brain-map.org/explore/

models/mv1-all-layers. We hope that the community will exploit

these resources to investigate more biologically refined models

of cortex, the most complex piece of active matter in the known

universe.
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STAR+METHODS
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Anton Arkhipov

(antona@alleninstitute.org). This study did not generate new unique reagents. The datasets and code generated are publicly available

(see Data and Code Availability).

EXPERIMENTAL MODELS AND SUBJECT DETAILS

The in vivo extracellular recordings used for comparison with simulations are freely available: https://portal.brain-map.org/explore/

circuits/visual-coding-neuropixels (Siegle et al., 2019).

METHOD DETAILS

Getting started
This section is a primer on how to start using our V1 network models employing the Brain Modeling ToolKit (BMTK; https://

alleninstitute.github.io/bmtk/ (Gratiy et al., 2018)). A thorough description can be found in the README file. The README file at

the time of publication can be found in Supplemental Material 1.

The models of visual cortex have been run and tested with BMTK under Python 2.7 and 3.6. Note that since the models are

provided as files in SONATA format (https://github.com/AllenInstitute/sonata, (Dai et al., 2020)), they can be simulated using other

software besides BMTK, as long as this software supports SONATA.

Installation and tutorials

The first step is to learn how to use BMTK. The up-to-date instructions on using BMTK can be accessed at: https://alleninstitute.

github.io/bmtk/.

Installation

The installation page on the website above describes howBMTK can be installed using a command line terminal. Installing BMTKwill

automatically install all the underlying Python packages dependencies. Users will need to install NEURON for the biophysical-level of

granularity and NEST for the GLIF-level of granularity of the network models:

https://www.neuron.yale.edu/neuron/download

https://nest-simulator.readthedocs.io/en/latest/installation/

Users also have the option of using a Docker Image to build and simulate networks without needing to install the BMTK prereq-

uisites on your computer (please see the BMTK website’s Installation page for this particular approach).

Installing with pip

pip install bmtk

Installing from source

git clone https://github.com/AllenInstitute/bmtk

cd bmtk

python setup.py install

Installing using Anaconda

conda install -c kaeldai bmtk

Tutorials

The tutorials page on the BMTK website links to different chapters that guide users on how to build and simulate networks at both

biophysical and GLIF levels of detail described in this manuscript. They start with single cell examples before moving to network

examples. The landing page (Chapter 0) can be found here: https://github.com/AllenInstitute/bmtk/blob/develop/docs/tutorial/

00_introduction.ipynb

The Primary Visual Cortex models

The portal for the models of primary visual cortex (V1) can be accessed at: https://portal.brain-map.org/explore/models/mv1-all-

layers

All details of our release are described in the README file. Here we provide an introduction for running the model, analyzing out-

puts, creating arbitrary movies, and descriptions of the file format.

Metadata resources

The meta-data, curation of experimental data that was use to constrain and build our models are available freely under the metadata

resources section as downloadable files. These include files that describe the V1 model structure (Figure 1), the number of synapses

estimated (see below), the connection probabilities and connection strengths (Figure 4).
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Running the models

Both models are run with BMTK using very similar commands. One simply needs to navigate to the correct directory (Biophysical or

GLIF) and run the following commands:

1. Biophysical V1 networkmodel (note formost biophysical simulations reported in this work, we usedN= 384 parallel processes)

mpirun -np N nrniv -mpi -python run_bionet.py config.json

2. GLIF V1 network model (this runs on a single CPU)

python run_pointnet.py config.json

Note both commands call a config.json file in their respective directories. This file determines the configuration to be used for a

simulation. In this file, users can set the duration of a simulation, the incoming spike trains, the connectivity, and many other simu-

lation relevant conditions. The files are in the SONATA format. A thorough description of the format can be found in the SONATA pa-

per (Dai et al., 2020) and at the SONATA GitHub page: https://github.com/AllenInstitute/sonata.

Simulation output and analysis

The complete simulation outputs from both models can be found in the output directories. The model portal repository provides

scripts for creating raster plots such as those shown in Figures 3, 5, 7, and 8, as well as the code used for calculating other metrics

reported in this work. For example, to create a raster plot, a user can simply run the following command:

python plot_raster.py

Creating arbitrary movies to present to the model

One of the main features of our model is the ability of users to simulate the response of visual cortex to arbitrary visual stimuli by

showing any mono-chromatic movie (x, y, t) to the LGN filters to generate a appropriate spike train, simulating the output of four

distinct classes of geniculate relay cells, that are then fed into the V1models. We have provided pre-built examples for drifting grating

stimuli and looming stimuli that can be found here:

https://github.com/AllenInstitute/bmtk/tree/develop/docs/examples

There is also a filter_movie directory (as an example) with 80 LGN units that can be exposed to any movie. A user can create and

save any numpy file that is 3-dimensional (frames over time). The config.json file can be set to point to the saved file of interest and the

output from the LGN can then be simulated.

For full integration with the LGNmodel used in this study, users can examine the drifting gratings class created in the python script

movie.py in the LGN section of the release (lines 150 – 214).

Model components

The format of our network files are described extensively in our papers and resources we released (Gratiy et al., 2018; Dai et al., 2020,

https://github.com/AllenInstitute/sonata). We briefly mention some of these components here.

Neurons

All relevant information about neurons is saved in two files, nodes.h5 and node_types.csv. The first file contains all unique infor-

mation about neurons (e.g., location coordinates) while the second contains repeated information across neurons (e.g., layer

information).

Connections

The connections, synaptic weights, and other connectivity-relevant parameters are stored in two files, edges.h5 and edge_types.csv.

Similar to the nodes, the first file contains every unique connection while the second contains shared information between

connections.

Simulation configuration

All simulation parameters and components needed to run a simulation are stored in a config.json file. This is the best starting point as

it will contain pointers to all the relevant directories and files being used by a simulation.

Instantiating the network
The V1 neurons were instantiated and distributed through every layer with raw number estimates available in the supplemental

document (document V1_structure.xlsx from our web portal available at https://portal.brain-map.org/explore/models/mv1-all-

layers). We considered the estimated cell densities measured in every layer based on nuclear stains (Sch€uz and Palm, 1989)

with the assumption of an 85% and 15% fractions for excitatory and inhibitory neurons, respectively. The fractions used for

the interneuron classes were based on expression levels in double in situ hybridization experiments (Lee et al., 2010). The layer

thicknesses were taken from the Allen Mouse Brain Atlas (see Cortical Layer Thickness Measurements). Our model incorporated

inhibitory neurons in layers L2/3 through to L6 from three broad classes, Paravalbumin- (Pvalb), Somatostatin- (Sst), and Htr3a-

prositive; and excitatory neurons in each layer were considered as one class (Figures 1A and 1C). Layer 1 (L1) had only a single

inhibitory class of Htr3a neurons (Lee et al., 2010; Tremblay et al., 2016). L2/3 excitatory neurons (class E2/3) were reconstructed

from the Cux2 Cre-line, which is almost pan-excitatory in this layer. L4 excitatory cells were reconstructed from four populations
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of cells studied in our slice recording pipeline (Gouwens et al., 2019) – the Scnn1a, Nr5a1, and Rorb Cre-lines, as well as recon-

structions from non-Cre-animals. L5 excitatory neurons were sourced from two populations – the cells labeled by the Rbp4 Cre-

line and unlabeled L5 neurons. Although L4 and L5 excitatory cells were reconstructed from multiple Cre-lines, it is not known

whether cells labeled by these different Cre lines differ in connectivity. Furthermore, they do not appear to show substantially

distinct patterns of activity in vivo under passive conditions (de Vries et al., 2020). Therefore, for all simulations and analyses

we combined the L4 and L5 excitatory cells into a single class per layer (E4 and E5). L6 contained one excitatory class (E6),

with neurons from Ntsr1 Cre-line only (due to availability at the time of creating the models). Altogether, we used 112 unique

neuron models for the biophysical and 111 for the GLIF networks. At time of model building, there were no Htr3a reconstructions

for L6 neurons and therefore we re-used the two deepest L5 Htr3a models to populate this cell class in L6. Although the Allen

Cell Types Database had more cell models, not all models could fit geometrically in the V1 volume without protruding beyond the

pia. This was due to Cre-lines not labeling specific layers exclusively, resulting in cases where cells from certain Cre-lines resided

in adjacent layers (see Somatic Coordinates).

The neuron models were fit to in-vitro measurements (Gouwens et al., 2018; Teeter et al., 2018) and are publicly available via the

Allen Cell TypesDatabase (http://celltypes.brain-map.org/). All our biophysicalmodels used passive dendrites although the Allen Cell

Types Database includes neuron models with active dendritic conductances. This was due to active-dendritic models being too

computationally expensive (prohibitively) for the extent of our work. Further, the somatic spike output from the active-dendrite

models do not show much better performance than the models with active conductances restricted to the soma (http://celltypes.

brain-map.org/). Therefore, we used the less computationally expensive neuron models.

Cortical Layer Thickness Measurements

Layer thicknesses for themodel were taken from the AllenMouse Brain Atlas (Oh et al., 2014 – http://atlas.brain-map.org/). Theywere

calculated from amouse common coordinate framework in which voxels were annotated with cortical areas and layers. In this frame-

work, streamlines were calculated that connected pia to white matter using the shortest paths (Oh et al., 2014 - Documentation in

http://atlas.brain-map.org/). For each voxel on the surface of V1, the thickness of each layer was calculated along the associated

streamline, and the median values across all of V1 were used to construct the model.

Somatic Coordinates

With the number of neurons identified (V1_structure.xlsx), we needed to assign somatic coordinates for every cell and select

appropriate neuron models. For the biophysically detailed neurons we also had to assign to a neuron a rotation about the depth

axis (white-matter to pia). This is due to our V1 model using a fixed number of reconstructed neuron models relative to the total

number of neurons simulated and hence when reusing a model, we randomly rotated the individual neurons between 0 and 2p

around the depth axis. For the somatic coordinates, cells for each population were uniformly distributed within a cylindrical domain

and within the specified layer depth. For the biophysical models, the depth of a neuron would affect which neuron model was

assigned to it. The first condition was that a model would not be assigned to a particular cell if that model’s morphology signif-

icantly extended out of the pia when placed at the cell’s somatic location (with a tolerance of 100 mm). Once all putative cell

models that pass this criterion were identified, we randomly selected a model based on a Gaussian probability density function

(with standard deviation of 20 mm).

Visual Coordinates

Neurons’ positions are defined in the physical space, whereas visual stimuli (see Visual Stimuli) supplied to the models, as well as the

LGN filters converting these stimuli to spike trains impinging on V1 neurons, are defined in the visual space. Thus, amapping between

the two spaces needs to be defined. The cortical plane (plane perpendicular to the depth axis) was mapped to the visual space, with

the geometrical center of the model corresponding to the center of the visual space. Retinotopic mapping experiments in the mouse

V1 identified how much displacement in visual cortex corresponded to displacements in visual space (Schuett et al., 2002; Kalatsky

and Stryker, 2003). Using these results (Figure 3 from Schuett et al., 2002 and Figure 4 from Kalatsky and Stryker, 2003), we approx-

imated that the visual degrees traversed per mm of cortex are 70 degrees/mm in the azimuth and 40 degrees/mm in elevation. Note

the asymmetry between the two directions. From this we can convert any translation of azimuth and elevation in cortex to a trans-

lation in visual space. For example, consider moving 845 mm in the azimuth (radius of the V1 model): the movement in visual space is

then estimated to be 0.845 mm * 70 degrees/mm = 59.15 degrees. The somatic position of every neuron was used, via such trans-

lations, to establish the assigned neuron’s position in the visual space, which was then used in algorithms establishing connectivity

from the LGN to V1 (see below).

Distributing LGN Units

We sought to create an LGN model that roughly captures the entire LGN with an estimated 18,000 neurons in the mouse. In our

model, we do not explicitly model the shell and core of the LGN and simply distribute the LGN units on a 2D plane in visual space

to model 240 degrees (horizontal) by 120 degrees (vertical). We imposed a lattice structure on the 2D plane by dividing it into girds

(15 blocks horizontally by 10 blocks vertically of size 16x12 degrees). Each block had a total of 116 LGN units (Table 1) distributed

uniformly within the block to give a total of 17,400 LGN units that can process arbitrary visual stimuli.
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Table 1. Distribution of LGN Unit Numbers in Every Block and the Receptive

Field Sizes per Class

LGN Class Units per Block Spatial Size Range (Degrees)

sON-TF1 7 [2, 9]

sON-TF2 5 [2, 9]

sON-TF4 7 [2, 9]

sON-TF8 15 [2, 9]

sOFF-TF1 8 [2, 9]

sOFF-TF2 8 [2, 9]

sOFF-TF4 15 [2, 9]

sOFF-TF8 8 [2, 9]

sOFF-TF15 7 [2, 9]

tOFF-TF4 10 [2, 9]

tOFF-TF8 5 [2, 9]

tOFF-TF15 8 [2, 9]

sONsOFF 8 6

sONtOFF 5 9
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Each LGN unit is represented by a spatio-temporally separable filter, which operated on the movies in the visual space as inputs,

and returned a time series of the instantaneous firing rate as output (this ratewas then converted to spikes in each individual trial using

a Poisson process). The spatial components of the LGN filters are spatially symmetric two-dimensional Gaussian kernels and the

temporal components are a sum of weighted raised-cosine bump basis functions (Pillow et al., 2005). The temporal kernel was de-

signed to have a bi-phasic impulse response:

DF
t ðtÞ = w1bðt; t1;d1Þ+w2bðt; t2;d2Þ;
bðt; t;dÞ = cosðlogðt + t Þ � dÞ+ 1

2

where there are six parameters: i) two time constants (t1; t2) for the basis functions, ii) two weights (w1,w2) used to linearly sum the

functions and iii) offsets (d2, d1). All data and code are available through the BMTK (https://alleninstitute.github.io/bmtk). The spatial

and temporal filters are combined to form a 3D spatiotemporal kernel to respond to input signals that are grayscale, represented on a

�1 to 1 scale (from black to white), with a time step of 1 ms.

The LGN filters were sampled from 14 classes (Table 1) that approximated the diversity observed in experimental recordings in vivo

(Durandetal., 2016) (seeMainTextandFigure2A). TheLGNfilter parametersused foreveryclasswereobtainedbyfittingfilter responses

to themean experimental responses for every class (resulting parameter values are available in the BMTK). A ± 2.5% jitterwas added for

every parameter when instantiating individual LGN filters.Weobserved that receptive field sizes of cells frommost of the LGN classes in

theexperimental recordings (Durandetal., 2016) spanneda large rangewithinclass.We thusassignedevery LGNunit a randomlygener-

atedspatial sizewithin the recorded rangesdrawn froma triangular distributiondefinedas follows: zeroat lower bound,peakat the lower

bound plus 1 degree, and then zero again at the upper bound (to approximate the experimental distributions).

Thalamocortical Architecture Impact on Direction Selectivity

The major guiding purpose for creating thalamocortical connections in our V1 models was to enable direction selectivity, which was

proposed to arise due to integration of sustained and transient LGN inputs by V1 cells (Lien and Scanziani, 2018). Before instantiating

such rules for the full-scale model, we performed a simplified theoretical analysis to investigate how combinations of transient and

sustained pools of LGN inputs, using biologically realistic parameters, would create direction-selective responses in target V1 cells.

For this analysis we approximated the LGN input to a V1 cell using a sustained ON and a transient OFF subfields.

For the thalamocortical projections to a V1 neuron in our full models (see Forming Thalamocortical Connections), we would first

identify all suitable LGN filters that have overlapping retinotopic positions with the V1 cell. This pool of filters was then split into a

sustained subfield ellipse in one half of the receptive field and a transient subfield ellipse in the other half (Figure 2C). The orientation

of the ellipses would depend on the assigned preferred angle of the V1 neuron. The ellipses’ major axis would be perpendicular to the

preferred direction of the V1 neuron and the sustained subfield would be positioned such that it is activated first in the case of a bar

moving in the preferred direction of the V1 neuron (Figure 2D). We would then randomly select filters from within these ellipses from

the population of sustained or transient LGN filters (Figures 2C and 3A). For the simplified theoretical analysis here, we consider the

sustainedONand transient OFF subfields, represented by a single elliptical filter each, approximating contributions from all LGN cells

within a subfield.
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The synaptic input current from one of the subfields (labeled as F =ON or F = OFF) to the V1 cell in response to a stimulus is then

described by

IFðtÞ = G ReLU
�
rFsp + LFðtÞ

�
; (1)

where G is the constant determining themagnitude of the current (assumed to be the same for both subfields), rFsp is a baseline (spon-

taneous) firing rate, and ReLUðxÞ is a rectified linear unit function that is zero below a threshold (here set at zero) and linear above the

threshold. The response is dependent on the stimulus Sðx;y; tÞ:

LFðtÞ =
ZN
0

dt

Z
dx dyRFðx; y; tÞSðx; y; t� tÞ; (2)

We consider the case where the two subfields are offset along the x axis, so that each subfield is described as:

RFðx; y; tÞ = Ds

�
x� lF ; y

�
DF

t ðtÞ: (3)

The assumption used here is that each kernel is spatio-temporally separable.

The temporal kernel used here is a sum of weighted raised-cosine bump basis functions as used above (Pillow et al., 2005; see

Distributing LGN units). The spatial kernel is described by an elliptical Gaussian profile:

Dsðx; yÞ = 1

2psxsy

exp

 
� x2

2s2
x

� y2

2s2
y

!
: (4)

with the standard deviations sx;sy, respectively. We will study a special case of subfields separated by a distance d along the x axis

using lON =d=2 and lOFF = � d=2:

RONðx; y; tÞ=Ds

�
x � d

2
; y

�
DON

t ðtÞ;

ROFFðx; y; tÞ=Ds

�
x +

d

2
; y

�
DOFF

t ðtÞ
(5)

Let us examine the response of a cell to moving grating stimuli having maximum luminance Smax and a contrast c:

Sðx; y; tÞ = 1

2
Smax

�
1 + c cos

�
kxx + kyy�ut

��
(6)

where k = ðkx; kyÞ defines the direction of the grating wave front: kx = kcosðqÞ, k = 2pSF, u= 2pTF and SF (cpd) and TF (Hz) are the

spatial and temporal frequencies of a grating, respectively.

It is more convenient to work in the complex space:

Sðx; y; tÞ = 1

2
Smax +

1

2
cSmaxRe

n
e�iðkxx + kyy�uðt�tÞÞo (7)

The input current from each subfield is IF =G ReLUðrFsp + LFðtÞÞ where rFsp is independent of stimulus and LFðtÞ= LF0 + LF1 is a stimulus

dependent response:

LF
1ðtÞ = S1Re

8<
:
ZN
0

dt

Z
dx dyRFðx; y; tÞe�iðkxx + kyy�uðt�tÞÞ

9=
; (8)
LF
0 = S0

ZN
0

dt

Z
dx dyRFðx; y; tÞ (9)

Here we use a short hand notation S1 = ð1 =2ÞcSmax and S0 = ð1 =2ÞSmax.

Substituting RFðx;y; tÞ we find:

LF
1 ðtÞ = S1Re

8<
:eiut

ZN
0

dte�iutDF
t ðtÞ

Z
dx dy e�iðkxx+ kyyÞDs

�
x� lF ; y

�9=; (10)

Since the temporal kernel DF
TðtÞ= 0 when t < 0, we can simply extend the integration to negative infinity over t.
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The temporal integral in LF1 ðtÞ is the Fourier transforms over time:

DF
t ðuÞ =

ZN
�N

dte�iutDF
t ðtÞ (11)

that could be expressed using the magnitude
��DF

t ðuÞ
�� and phase jFðuÞ:

DF
t ðuÞ =

��DF
t ðuÞ

�� exp�ijFðuÞ� (12)

The spatial integral in LF1 ðtÞ is the spatial Fourier transform:

DF
s

�
kx; ky; l

F
�
=

Z
dx dy e�iðkxx + kyyÞDs

�
x� lF ; y

�
(13)

Thus, we can express LF1 ðtÞ as
LF
1ðtÞ = S1Re

	
eiutDF

t ðuÞDF
s

�
kx; ky; l

F
�


(14)

Thus, the response to a drifting grating with temporal angular frequency u is determined by the Fourier component at that frequency

only. We can compute the temporal components (raised cosine bumps) Fourier transforms numerically.

We can compute the spatial transform analytically to find:

DF
s

�
kx; ky; l

F
�
= exp

�� ikxl
F
�
exp

�
�
�
k2xs

2
x + k2ys

2
y

�.
2
�

(15)

which has an amplitude: ��DF
s

�
kx; ky

� �� = exp
�
�
�
k2xs

2
x + k2ys

2
y

�.
2
�
: (16)

so that:

LF
1ðtÞ = S1

��DF
s

�
kx; ky

� ��Re
(
eiut
��DF

TðuÞ
�� ei

�
� kx l

F

2
+jFðuÞ

�)
(17)

The total input current to a cell is the sum from the two subfields:

IðtÞ = G
�
ReLU

�
rON
0 + LONðtÞ� + ReLU

�
rOFF
0 + LOFFðtÞ�� (18)

Using these equations, we can estimate both the direction selectivity index (DSI) and the orientation selectivity index (OSI) of the F0

and F1 components for a variety of filter parameters: subfield separation d, ellipse aspect ratio or width (determined by sx; sy ), and

temporal parameters. The F0 response is a commonly used metric that calculates the cycle average mean of the response to a drift-

ing grating while the F1 component computes the modulation response at the input temporal frequency (Movshon et al., 1978).

We used filter parameters from sON-TF8 and tOFF-TF8 as well all other default values: d = 5 degrees (Lien and Scanziani, 2013),

SF = 0.025cpd, TF = 8Hz, ellipse aspect ratio = 3.0, ellipse minor axis = 4.0 degrees. For a set of fixed stimulus (drifting grating), we

changed one parameter at a time and observed the impact on OSI and DSI. For the distance between the elliptical sustained and

transient subfields (d; Figure S1A), we note that the F1 component switches direction preference (i.e., its DSI changes sign) as

d grows, due to a shifting phase difference between the subfields. The DSI of the F0 component is always zero as the net input re-

mains constant for the preferred and null directions, consistent with experimental recordings (Lien and Scanziani, 2013, 2018). On the

other hand, the OSI of the F0 component is constant but non-zero due to the elliptical structure of the subfields that biases the net

input per grating cycle for specific orientations (but not directions). The OSI of the F1 component is positive even when d = 0 due to

the elliptical shape of the subfields (and temporal properties). Second, by varying the sustained time-to-peak parameter (starting

from the transient subfield’s time-to-peak of 30ms, Figure S1A), we observe, as expected, that asymmetry in the temporal properties

of the subfields is essential for producing direction selectivity. There is no direction selectivity in the F1 component when both filters

are identical temporally; but as the time-to-peak of the sustained subfield increases, there is a quick rise in F1 DSI. This is followed by

a reversal in the direction preference for very high (non-biological) time-to-peak values. The F1 OSI shows a sharp monotonic

decrease with the sustained time-to-peak while the F0 OSI is non-monotonic but roughly constant. Other changes investigated in

the subfield parameters were the aspect ratio of the ellipses and the size of the ellipses that both showed relatively constant F1

DSI as both ellipse sizes were altered together (Figure S1A). On the other hand, the OSI values showed a monotonic increase

with both illustrating the contribution of the elongated structure for endowing orientation selectivity. An aspect ratio of one still

showed some orientation selectivity due to the temporal offsets of the filters giving slight orientation selectivity (our OSI metric is

based on circular variance, see Orientation Selective Index below).

We next investigate the effect of changing the spatial frequency of the drifting grating (Figure S1B). As before, the F0 DSI al-

ways remains zero. As the spatial frequency increases, we again observe a reversal in the preferred direction for the F1 compo-

nent as observed experimentally in mouse cortex (Billeh et al., 2019). For orientation selectivity, the F1 OSI shows a sigmoidal
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increase as spatial frequency increased while the F0 OSI shows a peak with a fast decay due to reduced responsiveness of the

LGN ellipses to high spatial frequencies. On the other hand, the F1 OSI is relatively flat while the F0 OSI shows a peak response

as a function of temporal frequency, albeit with a slower decay, again due to the reduced responsiveness of the LGN subfields to

high temporal frequencies (Figure S1B). For our choice of subfield parameters, the F1 DSI does not switch sign as we varied

temporal frequency, but such switching can occur as observed experimentally and with different filter properties and time con-

stants (Billeh et al., 2019).

In summary, these simplified calculations confirm that the overarching model of the integration of sustained and transient LGN re-

sponses (Lien and Scanziani, 2018) indeed enables directionally selective input currents into V1 cells when biologically realistic pa-

rameters are used. Given this reassuring result, the next step was to create a similar architecture of connections to the V1model from

the thousands of filters representing LGN cells in the visual space.

Forming Thalamocortical Connections
The connections from the LGN to V1 neurons followed an approach similar to previous work (Arkhipov et al., 2018). The first step was

to establish shared retinotopy between the V1 neurons and the LGN units. The coordinates of the LGN units were in visual space

(degrees) while the V1 neurons’ coordinates were in regular 3D space mapped to the cortical surface and white-matter-to-pia depth

(see Somatic Coordinates). By imposing that the center of the V1model mapped to the center of the visual space, the location of each

V1 neuron was converted to visual space using the cortical magnification factor, as described in section Visual Coordinates. This

procedure assigned each V1 neuron a position in visual space, which may be expected to correspond approximately to the center

of that neuron’s RF in the complete model. We then identified which LGN units would project to every V1 neuron (from the classes to

receive LGN inputs; see Main Text and Table 2), as follows.
Table 2. Properties of the Subfields in the Visual Space Used to Select LGN Neurons Projecting to V1 Neurons (for Every Cell Class

Receiving LGN Inputs; the Remaining Classes Are Assumed to Receive no LGN Input)

V1 Neuron

Class

Connection

Probability

Mean LGN

Current (pA) V1 TF (Hz) SON Ratio

Separation

Range (degs)

Width

Range (degs)

Aspect

Ratio Range

Number of

Synapses

i1Htr 0.588 29.0 2.0 0.75 [6, 10] [8.5, 11] [2.2, 2.4] 10

E2/3 0.789 20.3 1.5 0.90 [4, 6] [7.5, 9.5] [3.4, 3.6] 15

i2/3Pvalb 0.824 50.8 2.0 0.75 [6, 10] [10, 13] [1.6, 1.8] 15

E4 1.000 46.0 2.0 0.90 [4, 6] [7.5, 9.5] [3.4, 3.6] 80

i4Pvalb 1.000 119.8 2.0 0.75 [6, 10] [10, 13] [1.6, 1.8] 75

E5 1.000 20.3 1.5 0.50 [8, 12] [12, 16] [1.6, 1.8] 15

i5Pvalb 1.000 63.7 2.0 0.50 [6, 10] [10, 13] [1.6, 1.8] 20

E6 0.778 17.1 1.5 0.90 [3, 4] [9, 11] [3.4, 3.6] 15

i6Pvalb 0.818 44.1 2.0 0.75 [6, 10] [10, 13] [1.6, 1.8] 10

The connection probability refers to probability a neuron receives input from the LGN (Ji et al., 2016). The mean LGN input current corresponds to the

mean excitatory LGN current the neuron class receives (Lien and Scanziani, 2013; Ji et al., 2016) when voltage clamped at the inhibitory synapse

reversal potential (see Thalamocortical Synaptic Weights). The V1 TF column represents the preferred temporal frequency of the V1 neuron class (Niell

and Stryker, 2008; Durand et al., 2016). The SON ratio refers to the probability the sustained component will be ON instead of OFF (Lien and Scanziani,

2013)—the transient component was always OFF. The separation range refers to the distance between the sustained and transient subfield ellipses—

E4 estimated from Lien and Scanziani (2013). The width range refers to the minor-axis width of the ellipses (diameter). The aspect ratio refers to the

length of themajor axis relative to theminor axis. Note the aspect ratio is relative to neurons’ visual space center, and once sizes of LGN receptive fields

are incorporated, the results match experimental measures (Lien and Scanziani, 2013) more accurately, as shown previously (Arkhipov et al., 2018).

The final column refers to the number of synapses an LGNneuronmakes to a V1 neuron if a connection exists. This was extrapolated from experimental

work (Morgenstern, Bourg and Petreanu, 2016), as discussed in Thalamocortical Synapse Estimate.
Given the directionally selective architecture to be imposed, every V1 neuron was assigned a preferred angle of stimulus motion to

determine the placement of the elliptical subfields from which LGN units would be sampled (Figures 2C, 2D, and 3A). There was al-

ways a transient OFF subfield and a sustained subfield that was either ON or OFF (this choice was made based on the relative abun-

dance of the different classes of LGN cells in our experimental recordings (Durand et al., 2016), as summarized in Figure 2A). The two

subfields were identically oriented and offset by certain distance; the offset and the short axes of both ellipses were co-aligned with

the assigned preferred direction of the target V1 neuron. The position of the target neuron was at themiddle of the line connecting the

centers of the two subfields (Figure 3A). The subfields were positioned along the vector of the preferred direction of the target

neuron in such a way that the vector pointed from the sustained subfield to the transient one (Figures 2C and 2D). Note

that the assigned angle was also used for the recurrent connectivity (see below) and was set such that every V1 neuron class

represented every angle in the range [0, 360�) with even spacing. The dimensions of the subfields and their separation varied
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based on the V1 neuron’s class (Table 2); these choices were made according to estimates of the expected metrics – such as

the OSIs and DSIs – for the class, based on experimental reports (see details and references in V1_parameter_estimate.pptx).

The subfield parameters for the E4 target population were informed by our previous model of L4 (Arkhipov et. al, 2018), and

parameters for the other populations were chosen following the assumption that V1 cell classes with stronger orientation/direc-

tion selectivity would utilize smaller and more elongated LGN subfields. Importantly, we chose these subfield parameters once

and did not vary them to tune the model for target OSI/DSI values. The good agreement with the experiment observed for the

final model (Figure 7) suggests that our initial choice of these subfield parameters was appropriate (and, to the best of our

knowledge, it is consistent with available experimental observations); however, it is possible that the agreement could be further

improved by tuning the subfield parameters.

As reported previously, a linear angle approximation was used (Arkhipov et. al, 2018). Further, every V1 neuron was assigned a

preferred temporal frequency drawn from a Poisson distribution with a mean asmeasured experimentally (Table 2, (Niell and Stryker,

2008; Durand et al., 2016)). This determined the probability of selecting LGN units preferring particular temporal frequencies. Given

that there was a discrete number of LGN filters for every class (sON, sOFF, tOFF), the probability of selecting a particular subclass

(i.e., a particular TF) was based on the distance of the V1 neuron’s temporal frequency from the LGN unit’s preferred temporal fre-

quency, divided by the total possible distance for that class.

Once the subfields were established, the LGN units to be connected to the target cell were selected among the units that had the

centers of their spatial kernels within the subfields (and of the LGN classmatching to each subfield, see Figure 3A). From this total pool,

LGN units were connected randomly based on the probability of connections (given their temporal frequency as mentioned above).

Thus, not every LGN unit in the subfield formed a connection with the target V1 cell (Figures 2C and 3A). Finally, for the ON/OFF filters,

a restriction was set that required the axis of the ON/OFF subfield to be within 15-degrees relative to the assigned direction preference

angle of the V1 neuron (Arkhipov et. al, 2018). With all these choices, the suitable LGN units were selected probabilistically to project to

each target V1 cell. Based on these rules, the average number of LGN units connecting to a V1 cell for excitatory neurons is: 19.3 ± 6.0

(mean ± SD),median = 19,min = 2,max = 47. For inhibitory neurons: 15.0 ± 4.4 (mean ± SD),median = 15,min = 2,max = 32. Themean

number of LGNprojecting units to V1 neurons is below the recently reported estimates (Lien and Scanziani, 2018); although the authors

themselves acknowledge their measurements are likely overestimates. Nevertheless, the most important parameter is the total synap-

tic current that every population receives (see Thalamocortical Synaptic Weights) which was matched to experimental measurements

(Lien and Scanziani, 2013, 2018) and could compensate for the differences we have in this version of the model.

Thalamocortical Synapse Estimate

For the biophysicalmodel we estimated the number of synapses impinging ondifferent V1 neurons. The exact numbers of synapses are

only estimatesas themorecritical stepwasensuring the total excitatory current received from theLGNmatchedexperimentalmeasure-

ments (see below). Should the number of synapses be incorrectly estimated, this was compensated for by the final synaptic weights.

Our calculation and formalism for the number of thalamocortical synapses per neuron is described below; we also provide a sup-

plementary document (Num_TC_synapses.xlsx) where all the calculations were done. As the field advances, in particular with elec-

tron-microscopy technology, we would need fewer assumptions and simply use the available data. In the model, synapses were

placed along the dendrites up to 150 mm away from the soma but excluding the soma, as done in a previous model of the layer 4

of V1 based on experimental reports (Schoonover et al., 2014; Arkhipov et al., 2018)

One key resourcewe usedwas the fluorescencemeasurements of the density of thalamocortical axons across cortical depth (Mor-

genstern et al., 2016). We used this work to determine the fraction of fluorescence across cortical layers as an estimate of the fraction

of LGN projections to different layers. The full calculation is in the accompanying supplemental document (Num_TC_synapses.xlsx)

and here we explain our technique and assumptions. In particular we assume the Fluorescence Signal (FS) is a function of the

following factors:

1) Number of cells in a layer (Sch€uz and Palm, 1989)

2) Percentage of cells that actually get innervated in a layer from the LGN (Ji et al., 2016)

3) At a specific depth (layer), the proportion of dendrites from cells in different layers that extend to other layers

a. For inhibitory neurons, dendrites where assumed to stay within their layers and not extend to other layers.

4) The fraction of LGN synapses on a stretch of dendrite is the same whether that dendrite is from an E or Pvalb cell.

a. Assumption includes that, out of all interneurons, Pvalb cells are the only ones to receive significant innervation except for layer

1 (Ji et al., 2016).

From here, for a specific layer, the below calculation was used to approximate the fluorescence signal (FS) from labeled thalamo-

cortical axons. This example is for layer 4:

FSL4 =A � 	NE4 � IRE4 � NTCE4 � FracL4
E4 +

Ni4Pvalb � IRi4Pvalb � NTCi4Pvalb � FracL4
i4Pvalb +

NE5 � IRE5 � NTCE5 � FracL4
E5 +

NE2=3 � IRE2=3 � NTCE2=3 � FracL4
E2=3

o
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In the accompanying document, this is found by summing the rows for the gray matrix. The different notations mean:

d FSL4 = Fluorescence signal in layer 4

d A= Constant factor converting fluorescence signal to biological innervation numbers.We assume fluorescence is a linear func-

tion of axon density, and so A is constant for every layer. We will need to solve for A (see below)

d NE4 = Number of excitatory cells in L4 (Sch€uz and Palm, 1989)

d IRE4 = Innervation ratio of LGN onto L4 pyramids (Ji et al., 2016)

d NTCE4 = Number of synapses that are thalamcortical for every L4 excitatory cell – the numbers we are seeking for every layer.

From (4) above, it is assumed that NTCi4Pvalb = NTCE4.

d FracL4E4 = The fraction of excitatory cells’ dendrites in L4 that is contributed from L4 cells (from assumption (3) above). See the

light green matrix in the accompanying excel sheet.

d Note that FracL4E4 + FracL4E2=3 + FracL4E5 = 1.

d Note that we assumed FracL4E6 = 0 and thus that is not included in the above example of L4.

d Note that FracL4i4Pvalb = 1 is assumed for all layers for Pvalbs (assumption (3.a) above).

We note that the document had a finer division of every layer (split in two: upper (A) and lower (B) components) and the idea of single

layers here is just used for explanatory purposes.

All these assumptions can be written in a matrix form as follows:

FS = Mp 3NTC

Where FS is an Nx1 matrix of the fluorescence signal across layers and NTC is the Number of thalamocortical synapses that is also

Nx1.Mp holds the properties described above and is amatrix of dimensions NxN (contributions from all layers). We can thus solve for

NTC by taking the inverse:

NTC = M�1
p 3FS

Since the constant factor A is not known, the values of NTC are not the actual numbers of synapses. To account for this, we use the

experimental finding that, in the mouse visual cortex, the number of thalamocortical synapses on L4 excitatory cells is approximately

1200-1500 (Schoonover et al., 2014; Arkhipov et al., 2018). This gives us the scaling factor to account for A and hence allows us to

estimate NTC for all layers.

For the supplemental document, which was divided into finer divisions, 1200 was used as the average of all the L4 divisions (see

scaling factor). The final numbers of synapses are shown in Table 2.

Thalamocortical Synaptic Weights

Various studies have identified the thalamic innervation pattern into the visual cortex across laminae (Lien and Scanziani, 2013, 2018;

Kloc and Maffei, 2014; Schoonover et al., 2014; Ji et al., 2016; Morgenstern et al., 2016; Bopp et al., 2017). We used these results to

identify the total current that different cell classes should receive from the LGN. One study, already published during building of the

model, measured that the net current into layer 4 excitatory cells responding to drifting gratings at their preferred angle was on

average 46 pA (Lien and Scanziani, 2013). Other work using optogenetic stimulation identified the cell classes that are innervated

by the thalamus, for both the probabilities and relative strengths (Ji et al., 2016). Assuming linear scaling to layer 4 excitatory neurons,

we estimated the target mean current for every cell class in response to a grating at a neuron’s preferred direction (Table 2).

To attain the target currents, for the biophysically detailed model, we created networks that had 100 cells from every model, all

preferring a single direction, that receive LGN innervation as described above (but no other connections). A grating at 2Hz, full

contrast, full field with a spatial frequency of 0.04 cycles per degree (to match the experimental work precisely (Lien and Scanziani,

2013)) was shown to these networks. Further, the neurons were clamped at the reversal potential of the inhibitory (GABA) synapses in

our model (again as performed experimentally). The net mean current during exposure was measured and the synaptic weights iter-

atively adjusted until the target current was reached with 2% tolerance. For surrounding LIF neurons, for the same stimulus, we

matched the firing rates that were observed with purely LGN input in the biophysically detailed core neurons of the same class.

As mentioned in the Main Text, during optimization of the full V1 model the weights of synapses from LGN to excitatory layer 4 cells

were not adjusted at all, given that the measurements we used as targets in the procedure described here were of high precision and

obtained in vivo (which is the condition we were aiming to match in our full model). Weights of all other synapses from LGN were

adjusted, but the adjustment was allowed to be no more than by a factor of 2 for the mean input current (Table 2).

Finally, the GLIF V1 model used the same strategy to attain the same target mean currents using the same grating LGN

stimulus. However, as the GLIF models employed in the V1 model were using post-synaptic current based synapses (see Synaptic

Characteristics), the weights were initially set as the target currents and no voltage clamping was required. However, the average

rheobase (minimal current step amplitude to elicit an action potential) of the GLIF models in the model are bigger than experimental

measurements, except for Pvalb neurons that had smaller rheobase values. To match closely to the experimental data, the estab-

lished weights from LGN to V1 were scaled by the average ratio between average rheobase of GLIF model and experiment data i.e.,

0.81 for Pvalb population and 1.36 for other populations.
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Background Connectivity
A second source of input to the V1 models was a background to coarsely represent the ‘‘rest of the brain.’’ This was modeled as a

single input unit that fired at 1 kHz with a Poisson distribution. All neurons received connections from this unit, and the weights were

optimized (at the same time with the optimization of weights for the recurrent connectivity) to ensure the V1 spontaneous firing rates

matched target experimental rates (see below).

Recurrent Connectivity
The cortico-cortical connection probabilities for different cell-class pairs were estimated based on an extensive and systematic sur-

vey of the existing literature and curated into a resource that we make publicly available (Figure 4, see details and notes regarding

assumptions and the literature used in Connection_probabilities.pptx). It is important to note that in many cases the values reported

in the literature do not take into account two effects that strongly influence connection probabilities. The first is distance dependence:

cells closer to each other typically have a higher chance of being connected than cells further apart. The second is that connection

probabilities can be affected strongly by differences or similarities in functional preferences of cells, such as preference for direction.

Pyramidal cells in L2/3 of mouse V1, for instance, have a higher chance of being connected with one another if they prefer similar

directions, compared to orthogonally tuned cells (Ko et al., 2011; Cossell et al., 2015; Wertz et al., 2015; Lee et al., 2016). Based

on these two factors, the adjustments described below were made.

It is reasonable to assume, for the mouse visual cortex, that both these factors are independent (given the ‘‘salt and pepper’’

arrangement of orientation tuned cells in the mouse (Harris and Mrsic-Flogel, 2013; Seabrook et al., 2017)) and thus the total prob-

ability of connection for a cell-class pair is a product of the distance-dependent and preferred-angle-dependent factors (functions of r

and Df, respectively):

Psrc/trg = PdistðrÞ3PangleðDfÞ
First we will discuss each of the components separately, and the final section will illustrate our approach for combining the two.

Distance dependent adjustment

We noted that the majority of the experimental literature reporting probability of connections tended to consider inter-somatic dis-

tances that were within approximately 0� 50 mm to 0� 100 mm. Since we aimed to have a Gaussian profile for distance dependence

(Levy and Reyes, 2012), the probability at the origin had to be adjusted to account for these measurements. Since measurements

were made in the approximate range of 50 -- 100 mm for the upper bound, we chose to consider the mid-point of 75 mm as our refer-

ence point for such upper bound. Note the distance is only measured in a plane and is independent of cortical depth in our

calculations.

For the Gaussian probability distribution:

PdistðrÞ = Ae�r2

s2

Given our assumptions, the integral of this probability from 0 toR0 = 75 mm, divided by the area within the radiusR0, should be equal

to the reported measured probability, Prep:

1

pR2
0

#
R0

0

Ae�r2

s2 dxdy = Prep

Converting to polar coordinates:

1

pR2
0

ZR0

0

Ae�r2

s22pr dr = Prep
R

2A

R2
0

Z 0

0

re�r2

s2dr = Prep

�A
s2

R2
0

�
e�r2

s2

�r =R0

r = 0

=Prep
2
�

A
s

R2
0

1� e�
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0
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�

This establishes the relationship between the values reported in the literature and our distance-dependent formula for connection

probability.

From work in the mouse cortex (Levy and Reyes, 2012), the standard deviations were estimated to be (Figure 4):

sE/E = 114 mm
sE/Pvalb = 92 mm
sE/Sst = 103 mm
sPvalb/E = 95 mm
sSst/E = 85 mm

From internal data at the Allen Institute during model building:

sPvalb/Pvalbz120 mm

In the absence of data for other connection classes, we assumed that connections between excitatory neurons and Htr3a neurons

follow the same dependence as between excitatory and Sst neurons (bidirectionally). Finally, we also assumed that connections

among all inhibitory classes have the same distance dependence (i.e., same as sPvalb/Pvalb).

Direction tuning adjustment for excitatory-to-excitatory connections

For direction tuning dependence, our system is modeled such that pairs containing cells with similar preferred direction angles have

higher connection probabilities than pairs of orthogonally tuned cells, when the presynaptic neuron is excitatory (like-to-like connec-

tivity) (Ko et al., 2011; Cossell et al., 2015;Wertz et al., 2015; Lee et al., 2016). Here we assume the dependence is linear (Figure 4D) as

a function of the direction tuning difference (Df):

PangleðDfÞ = B1 +GDf

Since we considered direction selective tuning for connectivity (not direction selective), the difference of preferred angles of any two

cells can be compressed to be between 0� and 90�. For this model, we can see that the intercept occurs at (0�;B1). At the other

extreme of the model, we set the point to be (90�;B2). The relative strength of the dependence can be described by a ratio Q =

B2=B1. As can be seen, for like-to-like, Q< 1 (i.e., G< 0).

Our model is developed such that the integral of the function PangleðDfÞ, normalized by the range of Df, is always equal to 1. This

was implemented because this function is used as a multiplier with the distance dependence function PdistðrÞ, and since we assume

that experimentalists measuring in-vitro probability of connections sample equally from cells preferring all possible direction angles

in vivo. This does restrict the ratioQ one can select, based on the distance dependence and measured connection probabilities from

experimental literature. As will be discussed below, if the ratio is outside of a suitable range, we rescaled it to reach the correct range.

Because B2 = QB1,

the gradient can be expressed as:

G =
QB1 � B1

90� � 0� =
B1ðQ� 1Þ

90�

Integral of Psrc/trgðDfÞ (with normalization for the angle range) should be set to 1to determine the scaling factor:

1

90�

Z90�
0�

ðB1 + GDfÞdDf = 1
�

1

90� B1Df+
1

2
GðDfÞ2

�90�
0�

= 1
B1 + 45�G= 1
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Substitute G:

B1 + 45�
�
B1ðQ� 1Þ

90�

�
= 1

Solving for B1:

B1 =
2

1+Q

And thus:

B2 =
2Q

1+Q

The value of Q for layers 2/3, 4, and 6 was set to 0.5 given the high direction selectivity (Niell and Stryker, 2008; Durand et al., 2016).

For layer 5, it was set at 0.8 for the excitatory-to-excitatory connections due to lower direction selectivity in this layer (Niell and

Stryker, 2008; Durand et al., 2016).

Combining distance-dependent and direction-dependent adjustments

As can be observed from the above, the scaling can increase the measured connection probability and to ensure our probabilities

were never greater than 1, we forced the following condition:

A 3 B1%1

Thus, we used the following algorithm:

{

Calculate A

If A > 1,

Set A = 1:0

Calculate B1

If A3 B1 > 1

Set B1 new = 1=A

Set B2 = B2 + ðB1 � B1 newÞ
Set B1 = B1 new

Calculate G = ðB2 � B1Þ=90�
# Intercept and gradient are determined and hence can apply PangleðDfÞ formula.

}

In this formalism (pseudo-code above), if one selects a specific value ofQ that happens to push the probability values above 1, the

worst-case scenario would be that Q is rescaled to 1:0 and hence there is no direction tuning dependence. The trend will never

reverse. And this scenario will only occur if there already exists a very high connectivity probability between two cell classes.

With this approach, we have accounted for distance dependence and functional connectivity between the different cell classes in

our model. Our next step was to determine the dendritic targeting rules for the biophysically detailed model.

Dendritic Targeting for the Biophysical Model

The location of synapses between connected neurons has been demonstrated to have different patterns depending on the neuronal

classes (Thomson and Lamy, 2007; Egger et al., 2015; Narayanan et al., 2015). Although, unfortunately, the available information is

sparse, it does delineate trends that may be generalizable, and thus we used these data to implement the rules described below.

Excitatory-to-Excitatory Connections

All excitatory-to-excitatory connection avoided the soma and targeted the apical and basal dendrites. For layers 2/3, and 4, the con-

nectionswerewithin 200 mm from the somawhile for layers 5 and 6, the synapses could form anywhere along the dendrites (Thomson

and Lamy, 2007; Egger et al., 2015; Narayanan et al., 2015). Note that the literature sources are mostly measurements from rat so-

matosensory cortex. The cortex depth in the rat is approximately 2 mm while our model it is 0.9 mm, and hence we scaled values

accordingly.

Excitatory-to-Inhibitory Connections

For excitatory-to-inhibitory synapses, both the soma and dendrites could be targeted with no distance limitations (Thomson and

Lamy, 2007). This was implemented for all layers and the values were again approximations from the relevant sources.

Inhibitory-to-Excitatory Connections (Inhibitory-to-Inhibitory Connections)

For inhibitory-to-excitatory connections we again depended on the data form rat cortex (Thomson and Lamy, 2007). Synapses from

the Pvalb class were placed on the soma and dendrites within 50 mm from the soma of any target neuron. Synapses from Sst neurons

were placed on the dendrites, 50 mm or further from the soma. Finally, synapses from Htr3a neurons were placed on the dendrites,

from 50 mm to 300 mm from the soma. These rules also considered the morphology of neurons in the mouse visual cortex from re-

constructions of axons and dendrites (Jiang et al., 2015). We assumed for these purposes that Pvalb neurons correspond to basket

cells, Sst neurons to Martinotti cells, and Htr3a neurons to Bitufted and Bipolar cells described by Jiang et al. (2015).
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Due to the lack of information on inhibitory-to-inhibitory connections, for this class of connections we used rules identical to the

inhibitory-to-excitatory connections described above.

Layer 1

Finally, for layer 1 neurons, which are Htr3a only in our V1 model, we used the rules below that heavily depended on data from rat

neocortex (Jiang et al., 2013) and neuron morphology from mouse V1 (Jiang et al., 2015), and are similar to other layers due to

lack of references with explicit measurements. Our original goal for the model was to project i1Htr3a-to-E2/3 to apical dendrites

(no somatic connections) from 50 mm and greater (see below). This is based on distance estimates from the bottom of L1 to upper

L2/3 that are approximately 50 mm. This was decided by observing the extent of axonal arbors of L1 (according to Jiang et al., 2015,

reconstructions). Similarly: i1Htr3a-to-E4 projected to apical dendrites that are 200 mm or further away from the soma; i1Htr3a-to-E5

projected to apical dendrites that are 300 mm or further away from the soma; i1Htr3a-to-E6 projected to apical dendrites that are

500 mm or further away from the soma; i1Htr3a-to-i1Htr3a projected everywhere including soma; i1Htr3a-to-i2/3 projected to basal

dendrites from 50 mm and greater. For the other inhibitory layers that project to layer 1, the same rules were used as for within-layer i-

to-Htr3a. Finally, excitatory projections to layer 1 were placed on the soma and dendrites with no distance limitations.

Note, however, that during our post-synaptic-potential optimization (see below), we had to change the rules of synaptic placement

when L1 was the source onto excitatory cells. Our optimization methodology would create 100 target cells of a specific cell model

that receive 1 spike at 0.5 s and we would record the generated postsynaptic potential (PSP). The weight would be scaled until we

were within 1% of the target PSP. We observed that the when L1 was the source impinging on excitatory cells, the targets sections

were so far away for the somata of target cells residing in L4, L5, and L6, that the somatic PSP would reach a maximum and never

match the target PSP regardless of how strongly the weight was scaled. This was due to themost distal compartments reaching their

maximum membrane deviation that is equal to the reversal potential of the synaptic drive. With these distal compartments being at

their maximum, and the attenuation that occurs due to dendritic filtering (recall dendrites in our model are passive), the soma would

reach a maximum PSP that did not match our target values.

To address this issue, we changed the synaptic placement rules for L1-to-Excitatory neurons so that synapses were placed closer

to the soma. In particular, the final rule used had all synapses placed at 50 mm or greater distance from the soma. In other words, all

rules for L1-to-Excitatory synapse placement are identical to L1-to-E2/3 and drawn from a uniform distribution in the range [50 mm,

dendrite length]. This is just a highly simplified approximation, but, in terms of reaching closer to the soma than our original rules, it is

reasonable since L1 neurogliaform cells are known to bulk releaseGABA into large volumes and not formwell-targeted synapseswith

post-synaptic cells (Szabadics et al., 2007; Oláh et al., 2009; Tremblay et al., 2016). In the future, employing neuronal models with

active dendritic conductances will help alleviate such problems. While a number of such ‘‘all-active’’ biophysical neuronal models

are already available in our Allen Cell Types Database (http://celltypes.brain-map.org/), they are much more computationally expen-

sive than the ‘‘perisomatic’’ biophysical neuronal models with passive dendrites, used here. Furthermore, even the active dendrite

models in the Allen Cell Types database have spatially uniform conductances, whereas to avoid the above described problem of

distal inputs driving the dendritic voltage to synaptic reversal potential, one would have to include experimentally observed soma-

todendritic gradients of ion channels (leak, voltage-dependent potassium, HCN) to reduce the input impedance of small diameter

dendritic branches. Developing reliable and accurate all-active neuronal models incorporating these gradients for a variety of cell

types is thus an important avenue for future work.

Finally note that in our optimization we always let the cells relax to their baseline. Since the resting potential is lower than the

reversal potential of the synapses, the single spike at 0.5 s would always cause a depolarization. We still used this depolarization

level to optimize weights for excitatory PSPs and inhibitory PSPs.

Orientation Rule for Synaptic Strength
Matching Target Post Synaptic Potentials

The first version of our V1 model (Figures 4 and 5) used an orientation-dependent like-to-like rule for synaptic weights of all connec-

tion classes: E-to-E, E-to-I, I-to-E, and I-to-I (see Main Text). Since neurons had pre-assigned preferred angles, the connection

strength was a function of the difference between the assigned angles of two connected neurons, defined within 90�. The synaptic

strength between two cells was then defined as:

W = AWe
�

�
Dq

sW

�2

where Dq is the difference between the assigned angles of two neurons and sW is the standard deviation set to 50� for all connection
classes. Finally, AW is the weight constant that needed to be determined for every connection class to be matched to Post Synaptic

Potential (PSP) targets.

For the biophysical model the units of W are in mS (defined as the peak conductance), and for GLIF model, in pA (see Synaptic

Characteristics). Since most of the studies used to construct our PSP resource (Connection_strengths.pptx) employed in vitro

patch-clamp experiments, the data do not distinguish a neuron’s functional preferences, such as preferred angle. Therefore, we

assumed the neurons were targeted uniformly and, thus, for optimization we created 100 target cells from every model that were

assigned tuning angles with equidistant spacing in the range [0, 360�). We then created a virtual source node for every connection
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class using the rules described above. The source node would emit 1 spike every 0.5 s. We then averaged the post-synaptic re-

sponses over all 100 target cells and iteratively updated the weight value (the factor AW in the equation above) until the mean

PSP was within 1% of the target value.

For scaling the weights when the target was a LIF neuron, 1000 source cells were created, each firing at 1Hz from a Poisson dis-

tribution. These cells would first target every biophysical cell model, using the synaptic weights that were already optimized as

described above, and the resulting firing rates due to this input would be calculated. The target firing rate for the LIF neurons

were then estimated as the weighted average rate (relative to the proportion of times a model would appear as part of a population).

The same source cells (with identical spike times) would then be connected to LIF targets and the firing rate would be matched to

within 5% of the desired firing rate.

For inhibitory connections onto the target LIFs, we used the same scaling factors as calculated for their excitatory counterparts.

Although not ideal, we chose this route after checking our previous Layer 4 model (Arkhipov et al., 2018) and observing that indeed in

that previous work the scaling ratios for LIFs for inhibitory input were approximately equal to the scaling ratios of excitatory inputs.

Finally, for the GLIF model, the weights could be calculated analytically based on connection strengths (i.e., PSPs) between the

source and target populations (shown in Connection_strengths.pptx) and the mathematical model of the postsynaptic current

(i.e., alpha function, see Synaptic Characteristics), together with the GLIF model membrane potential dynamics (Teeter et al.,

2018). Namely, the weights were computed by solving the following equation that describe dynamics in the GLIF model after one

spike injection.

vVðtÞ=vt = 1

C

�
IsynðtÞ� 1

R
ðVðtÞ�ELÞ

�

where VðtÞ is the membrane potential, C is the capacitance of the target neuron, IsynðtÞ is the alpha-shaped post-synaptic current

function with weight WGLIF (definition in Synaptic Characteristics), R is the resistance of the target neuron, and EL is the resting po-

tential. Note that weights in the GLIFmodel are current basedwhile they are conductance based for the biophysical model. The steps

for computing the weight WGLIF based on the above GLIF model voltage dynamics are:

1) Solving the above dynamic equation to get the analytical solution of membrane potential VðtÞ;
2) Computing the derivative of the solution of VðtÞ, i.e., vVðtÞ=vt;
3) Setting vVðtÞ=vt to zero and solving the equation to get the optimal time point tmax at which VðtÞ reaches its maximum;

4) Substituting tmax for t and the target PSP for VðtÞ to the solution of VðtÞ;
5) Solving the equation generated in 4) to get the weight WGLIF .

The resultant solution for the weight WGLIF is
WGLIF =

8>>>>>>><
>>>>>>>:

VtargetC

�
1

tm
� 1

tsyn

�
e

1�
1
tm

� 1
tsyn

�
tsyn

tmstsyn

VtargetCe
1

2tm
tm = tsyn

with Vtarget being the target PSP, tsyn being the synapse time constant, and tm being the membrane time constant.

Optimization of Full V1 Models

As described in the Main Text, running simulations after the above optimization did not yield suitable network behaviors in either of

our V1 models. Thus, we used an iterative grid search method (Arkhipov et al., 2018), where weights were uniformly scaled for every

class (e.g., scaling weights of excitatory layer 4 to excitatory layer 5 connections all by the same amount, as one iteration). We

searched in discrete increments weight changes across connection classes and selected the best result before moving on to the

next connection class (although there was still a need to revisit connections classes during this process). The optimization employed

a small training set consisting of two 0.5 s-long simulations: one of gray screen, and the other of a single drifting grating. We aimed to

satisfy three criteria: (i) match spontaneous firing rates (gray screen stimulus) to experimental observations, (ii) match peak firing rates

for the drifting grating, and (iii) avoid epileptic-like activity where the networkwould ramp up to have large global bursts and then enter

a period of silence until the next very rapid burst. Theweight adjustmentswere kept in a strict rangewhere, for example, the LGN to L4

excitatory weights were not adjusted at all given that they were fit to direct in vivo experimental measurements (Lien and Scanziani,

2013). Other LGN connections were restricted to be scaled only in the range [0.5, 2] from the target net input current as those were

scaled from optogenetics experiments (Ji et al., 2016). The optimization was performed starting from L4 only and adding successive

layers one by one (Figures 4G and S3). First, all interlayer connections were set to zero and only the intra-layer connections in L4 were

optimized. Once our criteria were met, we added L2/3 to the optimization, including the interactions between the two layers. This

procedure simplified the optimization process even though weights optimized at one step had to be readjusted at the next step (typi-

cally minor). This process was continued for layer 5, followed by layer 6, and finally layer 1. During our optimization, the weight scaling

was restricted in the range of [0.2, 5]. In the deeper layers (layers 5 and 6), this rule had to be expanded to reach the net adjustment
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range of [0.12, 18] for the biophysical model and [0.17, 6.0] for the GLIF model. Note that adjusting the synaptic weights in the bio-

physical model did not translate directly to scaling the PSP (see the Layer 1 description in Dendritic Targeting for the Biophysical

Model). The order of adding layers was selected based on the canonical cortical microcircuit (Douglas et al., 1989, 1995; Douglas

and Martin, 2007). We expect that using such biological insights to guide optimizations of large-scale biological models, perhaps

as a strategy accompanying algorithmic methods, may increase the speed and likelihood of convergence.

Optimization with the Direction-Based Rule and Phase Dependence for Synaptic Strength

As described in the Main Text, the next version of our V1 models used a rule for synaptic strengths that was asymmetric with respect

to the reversal of direction and included phase dependence, such that the strongest synaptic inputs were sourced from a stripe

perpendicular to the preferred direction of the target cell (Figures 6A and 6B). Once this rule was introduced, the weights needed

to be optimized further, as the balance in the network was affected. As a first step, we scaled the recurrent synaptic weights so

that the net current (area under the curve, Figure 6A) became the same as in the previous version of the model (Figure 4D) for every

connection class. However, this was not sufficient, and, thus, we further performed another round of optimization as described in the

above section. It turned out that because of the scaling to match the area under the curve, the weights were already close to the

correct solution, and we found that these new optimizations required only a few iterations before converging to meet our criteria.

For the same reason, here it was not necessary to optimize the models layer-by-layer, and instead the optimization was performed

with the full recurrent connectivity. The weight scaling was not constrained to tight limits, however, due to the new synaptic strength

profiles that deviated substantially and in a non-linear fashion from those used before.

Correcting for Biases between Horizontal- and Vertical-Preferring Neurons

After finalizing the optimization using the rules above, we noticed biased firing rates in our models, in that vertical drifting gratings

evoked higher firing rate relative to horizontal gratings (Figure 6C). Since this was not observed experimentally and was a result of

extra excitatory synaptic drive into vertically preferring neurons (Figure S6), we adjusted incoming synaptic weights to maintain equal

net synaptic drive. The adjustment depends on the cortical magnification factors in the azimuth and elevation dimensions. As

described in Visual Coordinates, the physical dimensions of each V1 neuron was converted to visual space by a conversion factor

of 70 degrees/mm in the azimuth (x-dimension) and 40 degrees/mm in elevation (z-dimension), estimated from experimental reports

(Schuett et al., 2002; Kalatsky and Stryker, 2003). To adjust for this asymmetry, we collapsed every neuron’s preferred angle to the

quadrant q= ½0; 90� and scaled synapses to neurons that preferred horizontal motion (0-degrees) by

ð70+ 40Þ=2
40

=
5:5

4

whereas synapses to neurons preferring vertical motion (90-degrees) were scaled by:

ð70+ 40Þ=2
70

=
5:5

7

Given these two points, we then fit a linear function to estimate the weight scaling for every intermediate value, resulting in

Wfactor =
5:5

4
� 11

1680
3 q

This weight adjustment fixed the bias (Figures 6C and S6) and resulted in horizontal-preferring neurons having a heavier tail of the

incoming synaptic strength distribution than vertical-preferring neurons (Figure 6E). Finally, due to our highly non-linear V1 models,

this adjustment resulted in deviations from our target optimization firing rates. Thus, a small amount of grid search tuning was needed

again to match our target criteria.

Synaptic Characteristics

The synaptic mechanisms used for the biophysical model were as in the L4 model (Arkhipov et al., 2018). The synapses were bi-

exponential (using NEURON’s Exp2Syn mechanism) with a reversal potential of �70 mV for inhibition and 0 mV for excitation. The

weights’ units are in mS (peak conductance). The tau1 and tau2 constants for the mechanism were 2.7 ms and 15 ms for inhibitory-

to-excitatory synapses, 0.2 and 8 ms for inhibitory-to-inhibitory synapses, 0.1 ms and 0.5 ms for excitatory-to-inhibitory synapses,

and 1 ms and 3 ms for excitatory-to-excitatory connections. Note that these are not the somatic temporal characteristics, but time

constants at the synaptic location; the PSP shape at the soma depends on dendritic location of the synapse and membrane

dynamics.

For the GLIF model, postsynaptic current-based synaptic mechanisms were used with dynamics described by an alpha-function:

IsynðtÞ = eWGLIF

tsyn
te

� t
tsyn

Where Isyn is the postsynaptic current, tsyn is the synaptic port time constant, andWGLIF is the input connection weight. This func-

tion was normalized such that a post-synaptic current with synapse weight WGLIF = 1:0 has an amplitude of 1.0 pA at the peak time

point of t = tsyn. The tsyn constants for the mechanisms were 5.5 ms for excitatory-to-excitatory synapses, 8.5 ms for inhibitory-to-

excitatory synapses, 2.8 ms for excitatory-to-inhibitory synapses, and 5.8 ms for inhibitory-to-inhibitory connections, which were

extracted from LIF models in the L4 model (Figure S2B of Arkhipov et al., 2018).
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Visual Stimuli

The visual stimuli used in our simulations were identical to those used for the experiments we compare to (except the looming disk

that had no experimental counterpart). Each simulation included a 500 ms interval of gray screen in the beginning, which was then

followed by a single trial of presentation of the stimulus.

Drifting Gratings

For the drifting grating stimuli, we used sinusoidal gratings with a spatial frequency of 0.04 cycles per degree with a temporal fre-

quency of 2Hz (for 2.5 s after the gray-screen). All stimuli were run for 10 trials for every direction of motion (8 sampled directions

with increments of 45 degrees) at 80% contrast (for both the experiments and the models). Although the experimental data from

mice (see below) included more temporal and spatial frequencies, we restricted our analysis to match the drifting gratings used in

our simulations.

Flashes

The flash stimuli (10 trials) consisted of: 500 ms of gray screen, followed by 250 ms of white screen (ON-flash), returning to a gray

screen for 1000 ms, then another 250 ms of black screen (OFF-flash), and a final gray screen for 500 ms). The contrast was at

80% (to match experiments). We also conducted simulations with full-contrast flashes (100%), and the models were stable and pro-

duced results very similar to the 80% contrast case (data not shown).

Natural Movies

We tested our models on a clip (10 trials) from one of the natural movies (Touch of Evil, directed by Orson Welles) used in the Allen

Brain Observatory (de Vries et al., 2020). The 2.5 s shown were matched between the model and experiment.

Looming Disk

The looming stimulus is a growing black disk (circle) on a gray background. When the maximum circle size (radius of 25 degrees) is

reached, the circle disappears and grows again. This is repeated four times throughout the 2.5 s stimulus presentation (625 ms dura-

tion for every repetition).

Electrophysiological Recordings
Animal preparation

All experimental procedures were approved by the Allen Institute for Brain Science Institutional Animal Care andUseCommittee. Five

weeks prior to the experiment, mice were anesthetized with isoflurane, and a metal headframe with a 10-mm circular opening was

attached to the skull with Metabond. In the same procedure, a 5-mm-diameter craniotomy and durotomy was drilled over left visual

cortex and sealed with a circular glass coverslip. Following a 2-week recovery period, a visual area map was obtained through

intrinsic signal imaging (Juavinett et al., 2017). Micewith well-defined visual areamapswere gradually acclimated to the experimental

rig over the course of 12 habituation sessions. On the day of the experiment, the mouse was placed under light isoflurane anesthesia

for�40 min to remove the glass window, which was replaced with a 0.5 mm thick plastic window with laser-cut holes (Ponoko, Inc.,

Oakland, CA). The space beneath the windowwas filled with agarose to stabilize the brain and provide a conductive path to the silver

ground wire attached to the headpost. Any exposed agarose was covered with 10,000 cSt silicone oil, to prevent drying. Following a

1-2 hour recovery period, the mouse was head-fixed on the experimental rig. Up to six Neuropixels probes coated in CM-DiI were

independently lowered through the holes in the plastic window and into visual cortex at a rate of 200 mm/min using a piezo-driven

microstage (New Scale Technologies, Victor, NY). When the probes reached their final depths of 2,500–3,500 mm, each probe

extended through visual cortex into hippocampus and thalamus. Only data obtained from V1 was included in this study. In total,

data from 20 mice were used for the drifting gratings analysis (one experiment per mouse) and 7 mice for the natural movie and flash

analysis.

Data acquisition system

Recordings were performed in awake, head-fixed mice allowed to run freely on a rotating disk. During the recordings, the mice

passively viewed a battery of visual stimuli, including local drifting gratings (for receptive fieldmapping), full-field flashes, drifting grat-

ings, static gratings, natural images, and natural movies, with the same parameters as those from the Allen Brain Observatory (de

Vries et al., 2020). All spike data were acquired with Neuropixels probes (Jun et al., 2017) with a 30-kHz sampling rate and recorded

with the Open Ephys GUI (Siegle et al., 2017). A 300-Hz analog high-pass filter was present in the Neuropixels probe, and a digital

300-Hz high-pass filter (3rd-order Butterworth) was applied offline prior to spike sorting.

Data preprocessing

Spike times and waveforms were automatically extracted from the raw data using Kilosort2 (https://github.com/mouseland/

kilosort2). Kilosort2 is a spike-sorting algorithm developed for electrophysiological data recorded by hundreds of channels simulta-

neously. It implements an integrated template matching framework for detecting and clustering spikes, rather than clustering based

on spike features, which is commonly used by other spike-sorting techniques. After filtering out units with ‘‘noise’’ waveforms using a

random forest classifier trained on manually annotated data, all remaining units were packaged into Neurodata Without Borders

format (Teeters et al., 2015) for further analysis.

Neuronal Classification

Regular spiking (RS) neurons and fast spiking (FS) neurons were determined by the duration of the spike (time between trough and

peak of thewaveform). The duration of the spikes showed a bimodal distribution (Hartigan dip test, p = 0.004), with a dip at 0.4ms.We

classified a neuron as RS if its duration was > 0.4 ms, and otherwise FS (Figure S2). In total we had 328 L6 RS neurons, 72 L6 FS
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neurons, 419 L5 RS neurons, 80 L5 FS neurons, 294 L4 RS neurons, 49 L4 FS neurons, 251 L23 RS neurons, 49 L23 FS neurons, and

81 L1 neurons.

QUANTIFICATION AND STATISTICAL ANALYSIS

Firing Rates
The firing rates were estimated from all trials of a simulation. Since all simulations started with a 500ms gray-screen period followed

by the stimulus, the firing rate is estimated using the stimulus duration without these first 500ms (that is, 2500ms for a drifting grating

or a naturalmovie). Thus, the firing rate for a neuron in a trial was calculated by dividing the total number of spikes after the gray screen

by the stimulus duration (2500ms). Somemetrics required time-dependent firing rates that are described below. For the OSI and DSI

metrics, to avoid noise from very sparsely firing neurons that could yield spurious OSI/DSI values of 1.0, we required that neurons’

firing rates at their preferred drifting grating direction be greater than 0.5 Hz. Further, for the OSI and DSI metrics, the firing rates were

normalized by their own spontaneous baseline firing rate (average firing rate of a neuron in the gray screen period over 80 trials). In

addition, we calculated the rates in the interval [50, 500] ms after stimulus onset as done experimentally.

Orientation Selectivity Index (OSI)
The OSI metric computed is also referred to as the global Orientation Selectivity Index, as it takes into account the response of a

neuron in all directions tested (not just the preferred and orthogonal). The OSI is calculated as:

OSI =
jPRqe

2iq jP
Rq

where Rq is the mean firing rate response to a drifting grating of angle q.

Direction Selectivity Index (DSI)
Similar to the OSI metric, the DSI also considered responses in all directions of drifting gratings shown (sometimes referred to as the

global Direction Selectivity Index). The DSI is calculated as:

DSI =
jPRqe

iq jP
Rq

where Rq is the mean firing rate response to a drifting grating of angle q.

Response at Preferred Direction
The plots quantifying neurons’ response at their preferred direction report the mean firing rate values based on the largest mean

response (across trials) over all 8 directions tested.

Signal Correlations, Noise Correlations, and Correlation of Signal and Noise Correlations
We computed the signal correlation as the Pearson correlation coefficient between the trial-averaged spike counts for each pair of

neurons (Arkhipov et al., 2018). For natural movies, we computed the correlation for binned spike counts in non-overlappingwindows

of length 50 ms. For gratings, the correlation was computed over the spike counts in 8 different directions. The noise correlation was

computed as the Pearson correlation coefficient between single-trial spike counts for each pair of neurons, and then averaged over

stimuli conditions (8 directions for gratings and non-overlapping 50 ms windows for natural movies). To compute the correlation of

signal and noise correlations for a single experimental mouse, we calculate the Pearson correlation coefficient between the noise

correlation and signal correlation metrics already calculated. Since we have many mice (20 for drifting gratings, 7 for natural movies),

we subsample neurons within 150 mm from the center mini-column of the models to match the number of neurons per mouse. The

subsampling is without replacement. We restricted the sampling near the center of the models to match experimental Neuropixels

recording as much as possible.

Lifetime and Population Sparsity
Lifetime sparsity for each neuron was computed using the following definition (Vinje and Gallant, 2000):

SL =
1� 1

N

ðP
i
riÞ2P
i
r2
i

1� 1
N

where N is the number of stimulus conditions and ri is the trial-averaged spike count for stimulus condition i (de Vries et al., 2020). To

compute the population sparsity, we used the same equation, but whereN is the total number of neurons in the population and ri is the

average spike-count of neuron i over all stimulus conditions (de Vries et al., 2020).
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Similarity Score
A similarity score was developed to compare the distribution of all excitatory neurons in the models with all regular spiking neurons

recorded experimentally as well as for Pvalb neurons in the models with fast-spiking neurons from the same Neuropixels recording.

The score compares any two distributions and does not require a normality assumption nor that both distributions have an equal

number of samples. Moreover it can be applied to any metric and we use it here to compare OSI, DSI, and the firing rate distributions

of the models with experiments. The metric uses the D statistic from a Kolmogorov–Smirnov test that calculates the distance be-

tween the cumulative distributions of two samples and is bounded in the range [0, 1]. Since we are interested in similarity in this

work and matching distributions, this was converted to a similarity score, S = 1� D. Figure S2F illustrates how for two different dis-

tributions S is close to 0, whereas for two similar distributions it approaches 1.

DATA AND CODE AVAILABILITY

The models and code generated during this study are available at https://portal.brain-map.org/explore/models/mv1-all-layers.

ADDITIONAL RESOURCES

The experimental data is available publicly at https://portal.brain-map.org/explore/circuits/visual-coding-neuropixels.
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